[1] |
Medley, D.O., Santiago, C. and Nascimento, J.C. (2021) Cycoseg: A Cyclic Collaborative Framework for Automated Medical Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 8167-8182. https://doi.org/10.1109/TPAMI.2021.3113077 |
[2] |
Orsic, M., Kreso, I., Bevandic, P. and Segvic, S. (2019) In Defense of Pre-Trained Imagenet Architectures for Real-Time Semantic Segmentation of Road-Driving Images. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, 15-20 June 2019, 12599-12608. https://doi.org/10.1109/CVPR.2019.01289 |
[3] |
Mou, L., Hua, Y. and Zhu, X. (2019) A Relation-Augmented Fully Convolutional Network for Semantic Segmentation in Aerial Scenes. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, 15-20 June 2019, 12408-12417. https://doi.org/10.1109/CVPR.2019.01270 |
[4] |
Luengo, J., Moreno, R., Sevillano, I., Charte, D., Pelaez-Vegas, A., Fernández-Moreno, M., Mesejo, P. and Herrera, F. (2022) A Tutorial on the Segmentation of Metallographic Images: Taxonomy, New Metaldam Dataset, Deep Learning-Based Ensemble Model, Experimental Analysis and Challenges. Information Fusion, 78, 232-253. https://doi.org/10.1016/j.inffus.2021.09.018 |
[5] |
Katircioglu, I., Rhodin, H., Constantin, V., Sporri, J., Salzmann, M. and Fua, P. (2021) Self-Supervised Human Detection and Segmentation via Background Inpainting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 9574-9588. https://doi.org/10.1109/TPAMI.2021.3123902 |
[6] |
Sakaridis, C., Dai, D. and Van Gool, L. (2022) Map-Guided Curriculum Domain Adaptation and Uncertainty-Aware Evaluation for Semantic Nighttime Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 3139-3153. https://doi.org/10.1109/TPAMI.2020.3045882 |
[7] |
Chapelle, O., Schlkopf, B. and Zien, A. (2006) Semi-Supervised Learning. The MIT Press, Cambridge. |
[8] |
Rawat, W. and Wang, Z. (2017) Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review. Neural Computation, 29, 2352-2449. https://doi.org/10.1162/neco_a_00990 |
[9] |
Schroff, F., Criminisi, A. and Zisserman, A. (2008) Object Class Segmentation Using Random Forests. The British Machine Vision Conference, 1-10. https://doi.org/10.5244/C.22.54 |
[10] |
Felzenszwalb, P.F., Girshick, R.B., McAllester, D.A. and Ramanan, D. (2009) Object Detection with Discriminatively Trained Part Based Models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32, 1627-1645. https://doi.org/10.1109/TPAMI.2009.167 |
[11] |
Redmon, J., Divvala, S.K., Girshick, R.B. and Farhadi, A. (2016) You Only Look Once: Unified, Real-Time Object Detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 27-30 June 2016, 779-788. https://doi.org/10.1109/CVPR.2016.91 |
[12] |
Ronneberger, O., Fischer, P. and Brox, T. (2015) U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab, N., Hornegger, J., Wells, W. and Frangi, A., Eds., Medical Image Computing and Computer-Assisted Intervention, Vol. 9351, Springer, Cham, 234-241. https://doi.org/10.1007/978-3-319-24574-4_28 |
[13] |
Chen, L.-C., Papandreou, G., Schroff, F. and Adam, H. (2017) Rethinking Atrous Convolution for Semantic Image Segmentation. ArXiv, 3, 1-14. |
[14] |
Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012) Imagenet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems, 25, 1097-1105 |
[15] |
Simonyan, K. and Zisserman, A. (2014) Very Deep Convolutional Networks for Large-Scale Image Recognition. ArXiv, 6, 1-14. |
[16] |
Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., et al. (2019) UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation. IEEE Transactions on Medical Imaging, 39, 1856-1867 https://doi.org/10.1109/TMI.2019.2959609 |
[17] |
Milletari, F., Navab, N. and Ahmadi, S.A. (2016) V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. 2016 Fourth International Conference on 3D Vision (3DV), Stanford, 25-28 October 2016, 565-571. https://doi.org/10.1109/3DV.2016.79 |
[18] |
Yu, F. and Koltun, V. (2015) Multi-Scale Context Aggregation by Dilated Convolutions. ArXiv, 3, 1-13. |
[19] |
Zhao, H., Shi, J., Qi, X., et al. (2017) Pyramid Scene Parsing Network. IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 21-26 July 2017, 2881-2890. https://doi.org/10.1109/CVPR.2017.660 |
[20] |
Chen, L.C., Papandreou, G., Kokkinos, I., et al. (2017) DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 834-848. https://doi.org/10.1109/TPAMI.2017.2699184 |
[21] |
Chen, L.C., Papandreou, G., Schroff, F., et al. (2017) Rethinking Atrous Convolution for Semantic Image Segmentation. ArXiv, 3, 1-14. |
[22] |
Hung, W.-C., Tsai, Y.-H., Liou, Y.-T., Lin, Y.-Y. and Yang, M.-H. (2018) Adversarial Learning for Semisupervised Semantic Segmentation. BMVC. https://doi.org/10.48550/arXiv.1802.07934 |
[23] |
Mittal, S., Tatarchenko, M. and Brox, T. (2019) Semi-Supervised Semantic Segmentation with High- and Low-Level Consistency. TPAMI. https://doi.org/10.48550/arXiv.1908.05724 |
[24] |
Li, D., Yang, J., Kreis, K., Torralba, A. and Fidler, S. (2021) Semantic Segmentation with Generative Models: Semisupervised Learning and Strong Out-of-Domain Generalization. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, 20-25 June 2021, 8296-8307. https://doi.org/10.1109/CVPR46437.2021.00820 |
[25] |
Souly, N., Spampinato, C. and Shah, M. (2017) Semi Supervised Semantic Segmentation Using Generative Adversarial Network. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, 22-29 October 2017, 5689-5697. https://doi.org/10.1109/ICCV.2017.606 |
[26] |
Chen, Y., Ouyang, X., Zhu, K. and Agam, G. (2021) Complexmix: Semi-Supervised Semantic Segmentation via Mask-Based Data Augmentation. 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, 19-22 September 2021, 2264-2268. https://doi.org/10.1109/ICIP42928.2021.9506602 |
[27] |
Grubišić, I., Oršić, M. and Šegvić, S. (2021) A Baseline for Semi-Supervised Learning of Efficient Semantic Segmentation Models. 2021 17th International Conference on Machine Vision and Applications (MVA), Aichi, 25-27 July 2021, 1-5. https://doi.org/10.23919/MVA51890.2021.9511402 |
[28] |
Olsson, V., Tranheden, W., Pinto, J. and Svensson, L. (2021) Classmix: Segmentation-Based Data Augmentation for Semi-Supervised Learning. 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, 3-8 January 2021, 1368-1377. https://doi.org/10.1109/WACV48630.2021.00141 |
[29] |
French, G., Laine, S., Aila, T., Mackiewicz, M. and Finlayson, G.D. (2020) Semi-Supervised Semantic Segmentation Needs Strong, Varied Perturbations. BMVC. https://doi.org/10.48550/arXiv.1906.01916 |
[30] |
Li, X., He, Q., Dai, S., Wu, P. and Tong, W. (2020) Semi-Supervised Semantic Segmentation Constrained by Consistency Regularization. 2020 IEEE International Conference on Multimedia and Expo (ICME), London, 6-10 July 2020, 1-6. https://doi.org/10.1109/ICME46284.2020.9102851 |
[31] |
Kim, J., Jang, J. and Park, H. (2020) Structured Consistency Loss for Semi-Supervised Semantic Segmentation. ArXiv, 2, 1-12. |
[32] |
Ouali, Y., Hudelot, C. and Tami, M. (2020) Semi-Supervised Semantic Segmentation with Cross-Consistency Training. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, 13-19 June 2020, 12671-12681. https://doi.org/10.1109/CVPR42600.2020.01269 |
[33] |
An, S., Zhu, H., Zhang, J., Ye, J., Wang, S., Yin, J. and Zhang, H. (2022) Deep Tri-Training for Semi-Supervised Image Segmentation. IEEE Robotics and Automation Letters, 7, 10097-10104. https://doi.org/10.1109/LRA.2022.3185768 |
[34] |
Chen, X., Yuan, Y., Zeng, G. and Wang, J. (2021) Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, 20-25 June 2021, 2613-2622. https://doi.org/10.1109/CVPR46437.2021.00264 |
[35] |
Peng, J., Estrada, G., Pedersoli, M. and Desrosiers, C. (2020) Deep Co-Training for Semi-Supervised Image Segmentation. Pattern Recognition, 107, Article ID: 107269. https://doi.org/10.1016/j.patcog.2020.107269 |
[36] |
Wu, Y., Liu, C., Chen, L., Zhao, D., Zheng, Q. and Zhou, H. (2022) Perturbation Consistency and Mutual Information Regularization for Semi-Supervised Semantic Segmentation. Multimedia Systems, 29, 511-523. https://doi.org/10.1007/s00530-022-00931-9 |
[37] |
Liu, Y., Tian, Y., Chen, Y., Liu, F., Belagiannis, V. and Carneiro, G. (2022) Perturbed and Strict Mean Teachers for Semi-Supervised Semantic Segmentation. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, 18-24 June 2022, 4258-4267. https://doi.org/10.1109/CVPR52688.2022.00422 |
[38] |
Zhu, X.J. (2008) Semi-Supervised Learning Literature Survey. Computer Sciences TR, 1530, 52. |
[39] |
Yang, L., Zhuo, W., Qi, L., Shi, Y. and Gao, Y. (2022) ST++: Make Self-Training Work Better for Semi-Supervised Semantic Segmentation. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, 18-24 June 2022, 4268-4277. https://doi.org/10.1109/CVPR52688.2022.00423 |
[40] |
Teh, E.W., Devries, T., Duke, B., Jiang, R., Aarabi, P. andTaylor, G.W. (2022) The Gist and Rist of Iterative Self-Training for Semi-Supervised Segmentation. 2022 19th Conference on Robots and Vision (CRV), Toronto, 31 May-2 June 2022, 58-66. https://doi.org/10.1109/CRV55824.2022.00016 |
[41] |
Li, H. and Zheng, H. (2021) A Residual Correction Approach for Semi-Supervised Semantic Segmentation. In: Ma, H., et al., Eds., Pattern Recognition and Computer Vision, Vol. 13022. Springer, Cham, 90-102. https://doi.org/10.1007/978-3-030-88013-2_8 |
[42] |
Yuan, J., Liu, Y., Shen, C., Wang, Z. and Li, H. (2021) A Simple Baseline for Semi-Supervised Semantic Segmentation with Strong Data Augmentation. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, 10-17 October 2021, 8209-8218. https://doi.org/10.1109/ICCV48922.2021.00812 |
[43] |
He, R., Yang, J. and Qi, X. (2021) Re-Distributing Biased Pseudo Labels for Semi-Supervised Semantic Segmentation: A Baseline Investigation. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, 10-17 October 2021, 6930-6940. https://doi.org/10.1109/ICCV48922.2021.00685 |
[44] |
Zhu, Y., Zhang, Z., Wu, C., Zhang, Z., He, T., Zhang, H., Manmatha, R., Li, M. and Smola, A.J. (2021) Improving Semantic Segmentation via Efficient Self-Training. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1. https://doi.org/10.1109/TPAMI.2021.3138337 |
[45] |
Chen, Z., Zhang, R., Zhang, G., Ma, Z. and Lei, T. (2020) Digging into Pseudo Label: A Low-Budget Approach for Semisupervised Semantic Segmentation. IEEE Access, 8, 41830-41837. https://doi.org/10.1109/ACCESS.2020.2975022 |
[46] |
Zhang, F.H., Torr, P., Ranftl, R. and Richter, S.R. (2021) Looking beyond Single Images for Contrastive Semantic Segmentation Learning. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.S., and Vaughan, J.W., Eds., Advances in Neural Information Processing Systems (NeurIPS), Curran Associates, Inc., New York. |
[47] |
Zhao, X.Y., Vemulapalli, R., Mansfield, P.A., Gong, B.Q., Green, B., Shapira, L. and Wu, Y. (2021) Contrastive Learning for Label Efficient Semantic Segmentation. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, 10-17 October 2021, 10603-10613. https://doi.org/10.1109/ICCV48922.2021.01045 |
[48] |
Liu, S., Zhi, S., Johns, E. and Davison, A.J. (2021) Bootstrapping Semantic Segmentation with Regional Contrast. ArXiv, 4, 1-23. |
[49] |
Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H., Raffel, C.A., Cubuk, E.D., Kurakin, A. and Li, C.-L. (2020) Fixmatch: Simplifying Semi-Supervised Learning with Consistency and Confidence. Advances in Neural Information Processing Systems, 33, 596-608. |
[50] |
Lai, X., Tian, Z., Jiang, L., Liu, S., Zhao, H., Wang, L. and Jia, J. (2021) Semi-Supervised Semantic Segmentation with Directional Context-Aware Consistency. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, 20-25 June 2021, 1205-1214. https://doi.org/10.1109/CVPR46437.2021.00126 |