[1] |
Stewart, C., Ralyea, C. and Lockwood, S. (2019) Ovarian Cancer: An Integrated Review. Seminars in Oncology Nursing, 35, 151-156. https://doi.org/10.1016/j.soncn.2019.02.001 |
[2] |
Ree, I.A., White, V.A., Indave, B.I. and Lokuhetty, D. (2020) Revising the WHO Classification: Female Genital Tract Tumours. Histopathology, 76, 151-156. https://doi.org/10.1111/his.13977 |
[3] |
Vergote, I., González-Martín, A., Ray-Coquard, I., Harter, P., Colombo, N., Pujol, P., et al. (2022) European Experts Consensus: BRCA/Homologous Recombination Deficiency Testing in First-Line Ovarian Cancer. Annals of Oncology, 33, 276-287. https://doi.org/10.1016/j.annonc.2021.11.013 |
[4] |
Zhang, C. and Liu, N. (2022) Noncoding RNAs in the Glycolysis of Ovarian Cancer. Frontiers in Pharmacology, 13, Article ID: 855488. https://doi.org/10.3389/fphar.2022.855488 |
[5] |
Warburg, O. (1956) On the Origin of Cancer Cells. Science, 123, 309-314. https://doi.org/10.1126/science.123.3191.309 |
[6] |
Han, C.Y., Patten, D.A., Kim, S.I., Lim, J.J., Chan, D.W., et al. (2021) Nuclear HKII-P-p53 (Ser15) Interaction Is a Prognostic Biomarker for Chemoresponsiveness and Glycolytic Regulation in Epithelial Ovarian Cancer. Cancers (Basel), 13, Article No. 3399. https://doi.org/10.3390/cancers13143399 |
[7] |
Kenny, H.A., Hart, P.C., Kordylewicz, K., Lal, M., Shen, M., Kara, B., et al. (2021) The Natural Product β-Escin Targets Cancer and Stromal Cells of the Tumor Microenvironment to Inhibit Ovarian Cancer Metastasis. Cancers (Basel), 13, Article No. 3931. https://doi.org/10.3390/cancers13163931 |
[8] |
李莉, 侯志敏. 卵巢癌组织中miR-125B-5p通过调控己糖激酶-2降低肿瘤能量代谢和抑制肿瘤细胞增殖[J]. 癌症, 2021, 40(9): 394-403. |
[9] |
王慧, 王静, 闫冬娟, 等. 二氢黄腐酚通过调控HK2表达对人卵巢癌顺铂耐药细胞株SKOV3/DDP的耐药性影响[J]. 医学研究生学报, 2022, 35(8): 806-812. |
[10] |
林莉香, 云红叶, 黄守国. 二甲双胍通过己糖激酶2调节糖酵解途径抑制卵巢癌细胞增殖和迁移[J]. 中国老年学杂志, 2022, 42(9): 2242-2245. |
[11] |
Schab, A.M., Greenwade, M.M., Stock, E., Lomonosova, E., Cho, K., Grither, W.R., et al. (2023) Stromal DDR2 Promotes Ovarian Cancer Metastasis through Regulation of Metabolism and Secretion of Extracellular Matrix Proteins. Molecular Cancer Research, OF1-OF15. https://doi.org/10.1158/1541-7786.MCR-23-0347 |
[12] |
Vidoni, C., Ferraresi, A., Vallino, L., Salwa, A., Ha, J.H., Seca, C., et al. (2023) Glycolysis Inhibition of Autophagy Drives Malignancy in Ovarian Cancer: Exacerbation by IL-6 and Attenuation by Resveratrol. International Journal of Molecular Sciences, 24, Article No. 1723. https://doi.org/10.3390/ijms24021723 |
[13] |
Chun, J. (2023) Isoalantolactone Suppresses Glycolysis and Resensitizes Cisplatin-Based Chemotherapy in Cisplatin-Resistant Ovarian Cancer Cells. International Journal of Molecular Sciences, 24, Article No. 12397. https://doi.org/10.3390/ijms241512397 |
[14] |
Taylor, C., Mannion, D., Miranda, F., Karaminejadranjbar, M., Herrero-Gonzalez, S., Hellner, K., et al. (2017) Loss of PFKFB4 Induces Cell Death in Mitotically Arrested Ovarian Cancer Cells. Oncotarget, 8, 17960-17980. https://doi.org/10.18632/oncotarget.14910 |
[15] |
Mondal, S., Roy, D., Sarkar Bhattacharya, S., Jin, L., Jung, D., Zhang, S., et al. (2019) Therapeutic Targeting of PFKFB3 with a Novel Glycolytic Inhibitor PFK158 Promotes Lipophagy and Chemosensitivity in Gynecologic Cancers. International Journal of Cancer, 144, 178-189. https://doi.org/10.1002/ijc.31868 |
[16] |
Yang, H., Shu, Z., Jiang, Y., Mao, W., Pang, L., Redwood, A., et al. (2019) 6-Phosphofructo-2-Kinase/Fructose- 2,6-Biphosphatase-2 Regulates TP53-Dependent Paclitaxel Sensitivity in Ovarian and Breast Cancers. Clinical Cancer Research, 25, 5702-5716. https://doi.org/10.1158/1078-0432.CCR-18-3448 |
[17] |
Boscaro, C., Baggio, C., Carotti, M., Sandonà, D., Trevisi, L., Cignarella, A. and Bolego, C. (2022) Targeting of PFKFB3 with miR-206 but Not mir-26b Inhibits Ovarian Cancer Cell Proliferation and Migration Involving FAK Downregulation. FASEB Journal, 36, e22140. https://doi.org/10.1096/fj.202101222R |
[18] |
Jia, Y.S., Yang, L., Zhu, Y.Q. and Ma, C.B. (2023) Beta-Catenin Knockdown Impairs the Viability of Ovarian Cancer Cells by Modulating YAP-Dependent Glycolysis. American Journal of Translational Research, 15, 982-994. |
[19] |
Tae, I.H., Son, J.Y., Lee, S.H., Ahn, M.Y., Yoon, K., Yoon, S., Moon, H.R. and Kim, H.S. (2020) A New SIRT1 Inhibitor, MHY2245, Induces Autophagy and Inhibits Energy Metabolism via PKM2/mTOR Pathway in Human Ovarian Cancer Cells. International Journal of Biological Sciences, 16, 1901-1916. https://doi.org/10.7150/ijbs.44343 |
[20] |
Park, J.H., Kundu, A., Lee, S.H., Jiang, C., Lee, S.H., Kim, Y.S., Kyung, S.Y., Park, S.H. and Kim, H.S. (2021) Specific Pyruvate Kinase M2 Inhibitor, Compound 3K, Induces Autophagic Cell Death through Disruption of the Glycolysis Pathway in Ovarian Cancer Cells. International Journal of Biological Sciences, 17, 1895-1908. https://doi.org/10.7150/ijbs.59855 |
[21] |
Sun, T., Liu, Z., Bi, F. and Yang, Q. (2021) Deubiquitinase PSMD14 Promotes Ovarian Cancer Progression by Decreasing Enzymatic Activity of PKM2. Molecular Oncology, 15, 3639-3658. https://doi.org/10.1002/1878-0261.13076 |
[22] |
Dou, L., Lu, E., Tian, D., Li, F., Deng, L. and Zhang, Y. (2023) Adrenomedullin Induces Cisplatin Chemoresistance in Ovarian Cancer through Reprogramming of Glucose Metabolism. Journal of Translational Internal Medicine, 11, 169-177. |
[23] |
Zhou, S., Li, D., Xiao, D., Wu, T., Hu, X., Zhang, Y., et al. (2022) Inhibition of PKM2 Enhances Sensitivity of Olaparib to Ovarian Cancer Cells and Induces DNA Damage. International Journal of Biological Sciences, 18, 1555-1568. https://doi.org/10.7150/ijbs.62947 |