[1]
|
廖鹏飞, 聂旺, 余雅心, 等. ZFNs、TALENs和CRISPR-Cas基因组靶向编辑技术及其在植物中的应用[J]. 基因组学与应用生物学, 2016, 35(2): 442-451.
|
[2]
|
Gong, Z., Cheng, M. and Botella, J.R. (2021) Non-GM Genome Editing Approaches in Crops. Frontiers in Genome Editing, 3, Article 817279. https://doi.org/10.3389/fgeed.2021.817279
|
[3]
|
Guo, Q., Liu, Q., Smith, N.A., Liang, G.L. and Wang, M.B. (2016) RNA Silencing in Plants: Mechanisms, Technologies and Applications in Horticultural Crops. Current Genomics, 17, 476-489.
https://doi.org/10.2174/1389202917666160520103117
|
[4]
|
Wilson, F.M., Harrison, K., Armitage, A.D., Simkin, A.J. and Harrison, R.J. (2019) CRISPR/Cas9-Mediated Mutagenesis of Phytoene Desaturase in Diploid and Octoploid Strawberry. Plant Methods, 15, Article No. 45.
https://doi.org/10.1186/s13007-019-0428-6
|
[5]
|
郭晓强. CRISPR-Cas9技术发展史: 25年的科学历程[J]. 自然杂志, 2016, 38(4): 278-286.
|
[6]
|
Horvath, P. and Barrangou, R. (2010) CRISPR/Cas, the Immune System of Bacteria and Archaea. Science, 327, 167-170. https://doi.org/10.1126/science.1179555
|
[7]
|
Rutkauskas, M., Songailiene, I.P., Kemmerich, F.E., et al. (2022) A Quantitative Model for the Dynamics of Target Recognition and off-Target Rejection by the CRISPR-Cas Cascade Complex. Nature Communications, 13, Article No. 7460. https://doi.org/10.1038/s41467-022-35116-5
|
[8]
|
Cui, Y.B., Xu, J.M., Chen, M.X., Liao, X.K. and Peng, S.L. (2018) Review of CRISPR/Cas9 sgRNA Design Tools. Interdisciplinary Sciences: Computational Life, 10, 455-465. https://doi.org/10.1007/s12539-018-0298-z
|
[9]
|
Makarova, K.S., Wolf, Y.I., Iranzo, J., et al. (2020) Evolutionary Classification of CRISPR-Cas Systems: A Burst of Class 2 and Derived Variants. Nature Reviews Microbiology, 18, 67-83. https://doi.org/10.1038/s41579-019-0299-x
|
[10]
|
Naoki, W., Keishi, O. and Yuriko, O. (2022) Expanding the Plant Genome Editing Toolbox with Recently Developed CRISPR-Cas Systems. Plant Physiology, 188, 1825-1837. https://doi.org/10.1093/plphys/kiac027
|
[11]
|
Kleinstiver, B.P., Prew, M.S., Tsai, S.Q., et al. (2015) Engineered CRISPR-Cas9 Nucleases with Altered PAM Specificities. Nature, 523, 481-485. https://doi.org/10.1038/nature14592
|
[12]
|
Duan, N.N., Tang, S.Q., Zeng, B., et al. (2021) An Episomal CRISPR/Cas12a System for Mediating Efficient Gene Editing. Life, 11, Article 1262. https://doi.org/10.3390/life11111262
|
[13]
|
Zhang, Y., Malzahn, A.A., Sretenovic, S. and Qi, Y.P. (2019) The Emerging and Uncultivated Potential of CRISPR Technology in Plant Science. Nature Plants, 5, 778-794. https://doi.org/10.1038/s41477-019-0461-5
|
[14]
|
Zhang, Y., Ren, Q., Tang, X., et al. (2021) Expanding the Scope of Plant Genome Engineering with Cas12a Orthologs and Highly Multiplexable Editing Systems. Nature Communications, 12, Article No. 1944.
https://doi.org/10.1038/s41467-021-22330-w
|
[15]
|
Wolter, F. and Puchta, H. (2018) The CRISPR/Cas Revolution Reaches the RNA World: Cas13, A New Swiss Army Knife for Plant Biologists. Plant Journal, 94, 767-775. https://doi.org/10.1111/tpj.13899
|
[16]
|
Mahas, A., Aman, R. and Mahfouz, M. (2019) CRISPR/Cas13d Mediates Robust RNA Virus Interference in Plants. Genome Biology, 20, Article No. 263. https://doi.org/10.1186/s13059-019-1881-2
|
[17]
|
Roueinfar, M., Templeton, H.N, Sheng, J.A. and Hong, K.L. (2022) An Update of Nucleic Acids Aptamers Theranostic Integration with CRISPR/Cas Technology. Molecules, 27, Article 1114. https://doi.org/10.3390/molecules27031114
|
[18]
|
胡思惠, 刘倩宜, 谢冬纯, 等. CRISPR/Cas基因编辑技术治疗人类遗传性疾病的临床研究进展[J]. 生命科学, 2020, 34(10): 1250-1263.
|
[19]
|
刘耀光, 李构思, 张雅玲, 等. CRISPR/Cas植物基因组编辑技术研究进展[J]. 华南农业大学学报, 2019, 40(5): 38-49.
|
[20]
|
李洋, 申晓林, 孙新晓, 等. CRISPR基因编辑技术在微生物合成生物学领域的研究进展[J]. 合成生物学, 2021, 2(1): 106-120.
|
[21]
|
Azhar, M., Phutela, R., Kumar, M., et al. (2021) Rapid and Accurate Nucleobase Detection Using FnCas9 and Its Application in COVID-19 Diagnosis. Biosensors and Bioelectronics, 183, Article ID: 113207.
https://doi.org/10.1016/j.bios.2021.113207
|
[22]
|
Yoshimi, K., Takeshita, K., Yamayoshi, S., et al. (2022) CRISPR-Cas3-Based Diagnostics for SARS-CoV-2 and Influenza Virus. iScience, 25, Article ID: 103830. https://doi.org/10.1016/j.isci.2022.103830
|
[23]
|
Chan, K.G., Ang, G.Y., Yu, C.Y. and Yean, C.Y. (2021) Harnessing CRISPR-Cas to Combat COVID-19: From Diagnostics to Therapeutics. Life, 11, Article 1210. https://doi.org/10.3390/life11111210
|
[24]
|
Chen, Z., Li, J., Li, T., et al. (2022) A CRISPR/Cas12a-Empowered Surface Plasmon Resonance Platform for Rapid and Specific Diagnosis of the Omicron Variant of SARS-CoV-2. National Science Review, 9, nwac104.
https://doi.org/10.1093/nsr/nwac104
|
[25]
|
Wang, L., Zhou, J.H., Wang, Q., Wang, Y.F. and Kang, C.S. (2021) Rapid Design and Development of CRISPR-Cas13a Targeting SARS-CoV-2 Spike Protein. Theranostics, 11, 649-664. https://doi.org/10.7150/thno.51479
|
[26]
|
Chen, P., Chen, M., Chen, Y., et al. (2022) Targeted Inhibition of Zika Virus Infection in Human Cells by CRISPR-Cas13b. Virus Research, 312, Article ID: 198707. https://doi.org/10.1016/j.virusres.2022.198707
|
[27]
|
Park, H., Kim, D., Cho, B., et al. (2022) In vivo Therapeutic Genome Editing via CRISPR/Cas9 Magnetoplexes for Myocardial Infarction. Biomaterials, 281, Article ID: 121327. https://doi.org/10.1016/j.biomaterials.2021.121327
|
[28]
|
Kim, D., Alptekin, B. and Budak, H. (2018) CRISPR/Cas9 Genome Editing in Wheat. Functional and Integrative Genomics, 18, 31-41.
|
[29]
|
Tran, M.T., Doan, D.T.H., Kim, J., et al. (2021) CRISPR/Cas9-Based Precise Excision of SlHyPRP1 Domain(s) to Obtain Salt Stress-Tolerant Tomato. Plant Cell Reports, 40, 999-1011. https://doi.org/10.1007/s00299-020-02622-z
|
[30]
|
Kieu, N.P., Lenman, M., Wang, E.S., Petersen, B.L. and Andreasson, E. (2021) Mutations Introduced in Susceptibility Genes through CRISPR/Cas9 Genome Editing Confer Increased Late Blight Resistance in Potatoes. Scientific Reports, 111, Article No. 4487. https://doi.org/10.1038/s41598-021-83972-w
|
[31]
|
Schubert, J., Fomitcheva, V. and Sztangret-Wiśniewska, J. (2007) Differentiation of Potato Virus Y Strains Using Improved Sets of Diagnostic PCR-Primers. Journal of Virological Methods, 140, 66-74.
https://doi.org/10.1016/j.jviromet.2006.10.017
|
[32]
|
Zhan, X., Zhang, F., Zhong, Z., et al. (2019) Generation of Virus-Resistant Potato Plants by RNA Genome Targeting. Plant Biotechnology Journal, 17, 1814-1822. https://doi.org/10.1111/pbi.13102
|
[33]
|
Li, S., Zhang, C., Li, J., et al. (2021) Present and Future Prospects of Wheat Improvement through Genome Editing and Advanced Technologies. Plant Communications, 2, Article ID: 100211. https://doi.org/10.1016/j.xplc.2021.100211
|
[34]
|
An, Y., Geng, Y., Yao, J., et al. (2020) Efficient Genome Editing in Populus Using CRISPR/Cas12a. Frontiers in Plant Science, 11, Article 593938. https://doi.org/10.3389/fpls.2020.593938
|
[35]
|
Khumsupan, P., Donovan, S. and McCormick, A.J. (2019) CRISPR/Cas in Arabidopsis: Overcoming Challenges to Accelerate Improvements in Crop Photosynthetic Efficiencies. Physiologia Plantarum, 166, 428-437.
https://doi.org/10.1111/ppl.12937
|
[36]
|
Ghosh, S., Lahiri, D., Nag, M., et al. (2022) Precision Targeting of Food Biofilm-Forming Genes by Microbial Scissors: CRISPR-Cas as An Effective Modulator. Frontiers in Microbiology, 13, Article 964848.
https://doi.org/10.3389/fmicb.2022.964848
|
[37]
|
Liu, K., Gao, Y., Li, Z.H., et al. (2022) CRISPR-Cas12a Assisted Precise Genome Editing of AycolicibacteriumNeoaurum. New Biotechnology, 66, 61-69. https://doi.org/10.1016/j.nbt.2021.10.003
|
[38]
|
Mu, K., Ren, X., Yang, H., et al. (2022) CRISPR-Cas12a-Based Diagnostics of Wheat Fungal Diseases. Journal of Agricultural and Food Chemistry, 70, 7240-7247. https://doi.org/10.1021/acs.jafc.1c08391
|
[39]
|
Cui, Y., Liao, X., Peng, S., et al. (2020) OffScan: A Universal and Fast CRISPR off-Target Sites Detection Tool. BMC Genomics, 21, Article No. 872. https://doi.org/10.1186/s12864-019-6241-9
|
[40]
|
Handelmann, C.R., Tsompana, M., Buck, M.J. and Samudrala, R. (2023) The Impact of Nucleosome Structure on CRISPR/Cas9 Fidelity. Nucleic Acids Research, 51, 2333-2344. https://doi.org/10.1093/nar/gkad021
|
[41]
|
Wang, D.X., Wang, Y.X., Wang, J., et al. (2022) MnO2 Nanosheets as a Carrier and Accelerator for Improved Live- Cell Biosensing Application of CRISPR/Cas12a. Chemical Science, 13, 4364-4371.
https://doi.org/10.1039/D1SC06383A
|