[1] |
Gentry, C. (2009) Fully Homomorphic Encryption Using Ideal Lattices. Proceedings of the 41st Annual ACM Symposium on Theory of Computing, Bethesda, 31 May 2009-2 June 2009, 169-178. https://doi.org/10.1145/1536414.1536440 |
[2] |
[2] Gentry, C, Sahai, A. and Waters, B. (2013) Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based. In: Canetti, R. and Garay, J.A., Eds., Advances in Cryptology—CRYPTO 2013. Lecture Notes in Computer Sci- ence, Vol. 8042, Springer, Berlin, Heidelberg, 75-92. |
[3] |
https://doi.org/10.1007/978-3-642-40041-4_5 |
[4] |
[3] Smart, N.P. and Vercauteren, F. (2014) Fully Homomorphic Simd Operations. Designs, Codes and Cryptography, 71, 57-81. https://doi.org/10.1007/s10623-012-9720-4 |
[5] |
[4] Hiromasa, R., Abe, M. and Okamoto, T. (2016) Packing Messages and Optimizing Bootstrap- ping in GSW-FHE. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 99, 73-82. https://doi.org/10.1587/transfun.E99.A.73 |
[6] |
[5] Wang, B., Wang, X. and Xue, R. (2018) Leveled FHE with Matrix Message Space. In: Chen, X., Lin, D. and Yung, M., Eds., Information Security and Cryptology. Inscrypt 2017. Lecture Notes in Computer Science, Vol. 10726, Springer, Cham, 260-277. https://doi.org/10.1007/978-3-319-75160-3_17 |
[7] |
[6] Bai, Y., Shi, X., Wu, W., et al. (2020) seIMC: A GSW-Based Secure and Efficient Integer |
[8] |
Matrix Computation Scheme with Implementation. IEEE Access, 8, 98383-98394. https://doi.org/10.1109/ACCESS.2020.2996000 |
[9] |
[7] Shamir, A. (1984) Identity-Based Cryptosystems and Signature Schemes. In: Blakley, G.R. and Chaum, D., Eds., Advances in Cryptology. CRYPTO 1984. Lecture Notes in Computer Science, |
[10] |
Vol. 196, Springer, Berlin, Heidelberg, 47-53. https://doi.org/10.1007/3-540-39568-7_5 |
[11] |
[8] Agrawal, S., Boneh, D. and Boyen, X. (2010) Efficient Lattice (H)IBE in the Standard Mod- el. In: Gilbert, H., Ed., Advances in Cryptology—EUROCRYPT 2010. EUROCRYPT 2010. Lecture Notes in Computer Science, Vol. 6110, Springer, Berlin, Heidelberg, 553-572. https://doi.org/10.1007/978-3-642-13190-5_28 |
[12] |
[9] 叶青, 胡明星, 汤永利, 等. 基于 LWE 的高效身份基分级加密方案 [J]. 计算机研究与发展, 2017, 54(10): 2193-2204. |
[13] |
[10] Wang, F., Wang, K. and Li, B. (2015) An Efficient Leveled Identity-Based FHE. In: Qiu, M., Xu, S., Yung, M. and Zhang, H., Eds., Network and System Security. NSS 2015. Lecture Notes in Computer Science, Vol. 9048, Springer, Cham, 303-315. |
[14] |
https://doi.org/10.1007/978-3-319-25645-0_20 |
[15] |
[11] 康元基, 顾纯祥, 郑永辉, 等. 利用特征向量构造基于身份的全同态加密体制 [J]. 软件学报, 2016, 27(6): 1487-1497. |
[16] |
[12] 陈虹, 黄洁, 陈红霖, 等. 身份基矩阵层级全同态加密方案 [J]. 计算机科学与探索, 2020, 14(10): 1702-1711. |
[17] |
[13] Ajtai, M. (1999) Generating Hard Instances of the Short Basis Problem. In: Wiedermann, J., van Emde Boas, P. and Nielsen, M., Eds., Automata, Languages and Programming. Lecture Notes in Computer Science, Vol. 1644, Springer, Berlin, Heidelber, 1-9. https://doi.org/10.1007/3-540-48523-6_1 |
[18] |
[14] Alwen, J. and Peikert, C. (2011) Generating Shorter Bases for Hard Random Lattices. Theory of Computing Systems, 48, 535-553. https://doi.org/10.1007/s00224-010-9278-3 |
[19] |
[15] Micciancio, D. and Peikert, C. (2012) Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller. In: Pointcheval, D. and Johansson, T., Eds., Advances in Cryptology—EUROCRYPT 2012. Lecture Notes in Computer Science, Vol. 7237, Springer, Berlin, Heidelberg, 700-718. https://doi.org/10.1007/978-3-642-29011-4_41 |
[20] |
[16] Regev, O. (2009) On Lattices, Learning with Errors, Random Linear Codes, and Cryptography. |
[21] |
Journal of the ACM, 56, Article No. 34. https://doi.org/10.1145/1568318.1568324 |
[22] |
[17] Peikert, C. (2009) Public-Key Cryptosystems from the Worst-Case Shortest Vector Problem. Proceedings of the 41st Annual ACM Symposium on Theory of Computing (STOC 2009), Bethesda, 31 May 2009-2 June 2009, 333-342. https://doi.org/10.1145/1536414.1536461 |
[23] |
[18] Micciancio, D. and Mol, P. (2011) Pseudorandom Knapsacks and the Sample Complexity of LWE Search-to-Decision Reductions. In: Rogaway, P., Ed., Advances in Cryptology—CRYPTO 2011. Lecture Notes in Computer Science, Vol. 6841, Springer, Berlin, Heidelberg, 465-484. https://doi.org/10.1007/978-3-642-22792-9_26 |
[24] |
[19] Dodis, Y., Ostrovsky, R., Reyzin, L., et al. (2008) Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data. SIAM Journal on Computing, 38, 97-139. https://doi.org/10.1137/060651380 |