[1] |
Lee, N.K., Sowa, H., Hinoi, E., et al. (2007) Endocrine Regulation of Energy Metabolism by the Skeleton. Cell, 130, 456-469. https://doi.org/10.1016/j.cell.2007.05.047 |
[2] |
Khosla, S. (2023) Evidence in Humans for Bone as an Endocrine Organ Regulating Energy Metabolism. Current Opinion in Endocrine and Metabolic Research, 31, Article ID: 100471. https://doi.org/10.1016/j.coemr.2023.100471 |
[3] |
Florencio-Silva, R., da Silva Sasso, G.R., Sasso-Cerri, E., Simões, M.J. and Cerri, P.S. (2015) Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. BioMed Research International, 2015, Article ID: 421746. https://doi.org/10.1155/2015/421746 |
[4] |
Oldknow, K.J., Macrae, V.E. and Farquharson, C. (2015) Endocrine Role of Bone: Recent and Emerging Perspectives beyond Osteocalcin. Journal of Endocrinology, 225, R1-R19. https://doi.org/10.1530/JOE-14-0584 |
[5] |
Arias, C.F., Herrero, M.A., Echeverri, L.F., Oleaga, G.E. and López, J.M. (2018) Bone Remodeling: A Tissue-Level Process Emerging from Cell-Level Molecular Algorithms. PLOS ONE, 13, e0204171. https://doi.org/10.1371/journal.pone.0204171 |
[6] |
Ferron, M. and Lacombe, J. (2014) Regulation of Energy Me-tabolism by the Skeleton: Osteocalcin and beyond. Archives of Biochemistry and Biophysics, 561, 137-146. https://doi.org/10.1016/j.abb.2014.05.022 |
[7] |
Fernandes, T.A.P., Gonçalves, L.M.L. and Brito, J.A.A. (2017) Relationships between Bone Turnover and Energy Metabolism. Journal of Diabetes Research, 2017, Article ID: 9021314. https://doi.org/10.1155/2017/9021314 |
[8] |
Confavreux, C.B. (2011) Bone: From a Reservoir of Miner-als to a Regulator of Energy Metabolism. Kidney International, 79, S14-S19. https://doi.org/10.1038/ki.2011.25 |
[9] |
Lin, X., Brennan-Speranza, T.C., Levinger, I. and Yeap, B.B. (2018) Un-dercarboxylated Osteocalcin: Experimental and Human Evidence for a Role in Glucose Homeostasis and Muscle Regula-tion of Insulin Sensitivity. Nutrients, 10, Article No. 847. https://doi.org/10.3390/nu10070847 |
[10] |
Hauschka, P.V., Lian, J.B., Cole, D.E. and Gundberg, C.M. (1989) Osteocalcin and Matrix Gla Protein: Vitamin K-Dependent Pro-teins in Bone. Physiological Reviews, 69, 990-1047. https://doi.org/10.1152/physrev.1989.69.3.990 |
[11] |
Ferron, M., Hinoi, E., Karsenty, G. and Ducy, P. (2008) Osteocalcin Differentially Regulates Beta Cell and Adipocyte Gene Ex-pression and Affects the Development of Metabolic Diseases in Wild-Type Mice. Proceedings of the National Academy of Sciences of the United States of America, 105, 5266-5270. https://doi.org/10.1073/pnas.0711119105 |
[12] |
Ng, K.W. and Martin, T.J. (2009) New Functions for Old Hormones: Bone as an Endocrine Organ. Molecular and Cellular Endocrinology, 310, 1-2. https://doi.org/10.1016/j.mce.2009.07.002 |
[13] |
Ducy, P., Zhang, R., Geoffroy, V., Ridall, A.L. and Karsenty, G. (1997) Osf2/Cbfa1: A Transcriptional Activator of Osteoblast Differentiation. Cell, 89, 747-754. https://doi.org/10.1016/S0092-8674(00)80257-3 |
[14] |
Ducy, P., Desbois, C., Boyce, B., et al. (1996) Increased Bone Formation in Osteocalcin-Deficient Mice. Nature, 382, 448-452. https://doi.org/10.1038/382448a0 |
[15] |
Mizokami, A., Kawakubo-Yasukochi, T. and Hirata, M. (2017) Osteocalcin and Its Endocrine Functions. Biochemical Pharmacology, 132, 1-8. https://doi.org/10.1016/j.bcp.2017.02.001 |
[16] |
Kanazawa, I. (2015) Osteocalcin as a Hormone Regulating Glucose Metabolism. World Journal of Diabetes, 6, 1345-1354. https://doi.org/10.4239/wjd.v6.i18.1345 |
[17] |
Bilotta, F.L., Arcidiacono, B., Messineo, S., et al. (2018) Insulin and Osteocalcin: Further Evidence for a Mutual Cross-Talk. Endo-crine, 59, 622-632. https://doi.org/10.1007/s12020-017-1396-0 |
[18] |
Rosen, C.J. and Motyl, K.J. (2010) No Bones about It: Insulin Modulates Skeletal Remodeling. Cell, 142, 198-200. https://doi.org/10.1016/j.cell.2010.07.001 |
[19] |
Otani, T., Mizokami, A., Kawakubo-Yasukochi, T., et al. (2020) The Roles of Osteocalcin in Lipid Metabolism in Adipose Tissue and Liver. Advances in Biological Regulation, 78, Arti-cle ID: 100752. https://doi.org/10.1016/j.jbior.2020.100752 |
[20] |
Wei, J., Ferron, M., Clarke, C.J., et al. (2014) Bone-Specific Insu-lin Resistance Disrupts Whole-Body Glucose Homeostasis via Decreased Osteocalcin Activation. Journal of Clinical In-vestigation, 124, 1-13. https://doi.org/10.1172/JCI72323 |
[21] |
Pandey, A., Khan, H.R., Alex, N.S., et al. (2020) Under-Carboxylated Os-teocalcin Regulates Glucose and Lipid Metabolism during Pregnancy and Lactation in Rats. Journal of Endocrinological Investigation, 43, 1081-1095. https://doi.org/10.1007/s40618-020-01195-8 |
[22] |
Yamauchi, T., Kamon, J., Waki, H., et al. (2001) The Fat-Derived Hormone Adiponectin Reverses Insulin Resistance Associated with Both Lipoatrophy and Obesity. Nature Medicine, 7, 941-946. https://doi.org/10.1038/90984 |
[23] |
Yamauchi, T., Kamon, J., Ito, Y., et al. (2003) Cloning of Adiponectin Receptors That Mediate Antidiabetic Metabolic Effects. Nature, 423, 762-769. https://doi.org/10.1038/nature01705 |
[24] |
Tsuchida, A., Yamauchi, T., Ito, Y., et al. (2004) Insulin/Foxo1 Pathway Regulates Expression Levels of Adiponectin Receptors and Adiponectin Sensitivity. Journal of Biological Chemistry, 279, 30817-30822. https://doi.org/10.1074/jbc.M402367200 |
[25] |
Yamauchi, T., Nio, Y., Maki, T., et al. (2007) Targeted Disruption of AdipoR1 and AdipoR2 Causes Abrogation of Adiponectin Binding and Metabolic Actions. Nature Medicine, 13, 332-339. https://doi.org/10.1038/nm1557 |
[26] |
Otani, T., Mizokami, A., Hayashi, Y., et al. (2015) Signaling Path-way for Adiponectin Expression in Adipocytes by Osteocalcin. Cellular Signalling, 27, 532-544. https://doi.org/10.1016/j.cellsig.2014.12.018 |
[27] |
de Paula, F.J. and Rosen, C.J. (2013) Bone Remodeling and En-ergy Metabolism: New Perspectives. Bone Research, 1, 72-84. https://doi.org/10.4248/BR201301005 |
[28] |
Funakoshi, S., Yoshimura, K., Hirano, S., et al. (2020) Undercarbox-ylated Osteocalcin Correlates with Insulin Secretion in Japanese Individuals with Diabetes. Diabetology & Metabolic Syndrome, 12, Article No. 72. https://doi.org/10.1186/s13098-020-00579-3 |
[29] |
Garanty-Bogacka, B., Syrenicz, M., Rać, M., et al. (2013) Asso-ciation between Serum Osteocalcin, Adiposity and Metabolic Risk in Obese Children and Adolescents. Endokrynologia Polska, 64, 346-352. https://doi.org/10.5603/EP.2013.0016 |
[30] |
Rodríguez-Narciso, S., Martínez-Portilla, R.J., Guzmán-Guzmán, I.P., et al. (2022) Osteocalcin Serum Concentrations and Markers of Energetic Metabolism in Pediatric Patients. Systematic Review and Metanalysis. Frontiers in Pediatrics, 10, Article 1075738. https://doi.org/10.3389/fped.2022.1075738 |
[31] |
Zheng, W.-B., Hu, J., Zhao, D.-C., et al. (2022) The Role of Os-teocalcin in Regulation of Glycolipid Metabolism and Muscle Function in Children with Osteogenesis Imperfecta. Fron-tiers in Endocrinology, 13, Article 898645. https://doi.org/10.3389/fendo.2022.898645 |
[32] |
Ugurlu, I., Akalin, A. and Yorulmaz, G. (2022) The Association of Serum Osteocalcin Levels with Metabolic Parameters and Inflammation in Postmenopausal Women with Metabolic Syndrome. Metabolic Syndrome and Related Disorders, 20, 219-223. https://doi.org/10.1089/met.2021.0074 |
[33] |
Lei, H., Liu, J., Wang, W., et al. (2022) Association between Osteocal-cin, a Pivotal Marker of Bone Metabolism, and Secretory Function of Islet Beta Cells and Alpha Cells in Chinese Patients with Type 2 Diabetes Mellitus: An Observational Study. Diabetology & Metabolic Syndrome, 14, Article No. 160. https://doi.org/10.1186/s13098-022-00932-8 |