OCT和OCTA影像学特征在视网膜静脉阻塞中的研究进展
Research Progress of OCT and OCTA Imaging Features in Retinal Vein Occlusion
摘要:视网膜静脉阻塞(RVO)是血栓形成对视网膜静脉系统的阻塞,是第二常见的视网膜血管疾病,是视力丧失和视力障碍的重要原因。光学相干断层扫描(OCT)是诊断RVO所致黄斑水肿(ME)的可靠影像学检查,可对视网膜各层结构进行定性和定量结构评估。光学相干断层扫描血管造影(OCTA)通过检测腔内血流,实现视网膜和脉络膜血管网的无创、深度选择性可视化,可形成三维高分辨率图像,而常规荧光素血管造影(FFA)无法实现这种空间分辨率。因此,OCTA可用于观察视网膜和脉络膜血管的微灌注,以及不同病理类型和治疗过程中视网膜和脉络膜血管的变化。本文就OCT和OCTA影像学特征在RVO病程发展及其抗血管内皮生长因子(VEGF)治疗中的应用进行综述,以期为评估RVO的严重程度、调整治疗方案并判断疾病的预后提供参考。
Abstract:Retinal vein occlusion (RVO) is the occlusion of the retinal venous system by thrombosis. It is the second most common retinal vascular disease and an important cause of visual loss and impairment. Optical coherence tomography (OCT) is a reliable imaging examination for the diagnosis of macular edema caused by RVO, which can qualitatively and quantitatively evaluate the structure of each layer of the retina. Optical coherence tomography angiography (OCTA) enables noninvasive, depth selective visualization of retinal and choroidal vascular networks by detecting intravinal blood flow, resulting in three-dimensional high-resolution images that cannot be achieved with conventional fluorescein angiography (FFA). Therefore, OCTA can be used to observe microperfusion of retinal and choroidal vessels, as well as changes in retinal and choroidal vessels during different pathological types and treatments. This article reviews the application of OCT and OCTA imaging features in the development of RVO and its anti-vascular endothelial growth factor (VEGF) therapy, in order to provide reference for assessing the severity of RVO, adjusting the treatment plan and judging the prognosis of the disease.
文章引用:李都吉雅, 张景馨, 韩珊, 赵全良. OCT和OCTA影像学特征在视网膜静脉阻塞中的研究进展[J]. 眼科学, 2023, 12(3): 112-119. https://doi.org/10.12677/HJO.2023.123016

1. 引言

RVO的发病机制尚不完全清楚,但主要是血管腔内血栓形成,或者血管内栓子的脱落,通常继发于高血压、糖尿病、高脂血症等 [1] 。静脉循环的阻塞引起毛细血管腔内压力升高,导致视网膜内的出血和液体渗漏,间质压增加,从而减少视网膜灌注,视网膜缺血可能导致VEGF的分泌,从而导致进一步的血管渗漏和视网膜水肿 [2] 。目前抗VEGF治疗是RVO的首选治疗方案,近年来RVO的发病率随着人口老龄化速度加快及心血管疾病发病率的增高也随之增加,因此寻找能够有效预测或评估抗VEGF药物治疗RVO疗效的生物标志物,将有助于评估RVO的严重程度,继而调整治疗方案,并判断疾病预后。OCT是一种易于获得的低损、高分辨、非侵入性成像方式,在1990年代由藤本首次提出 [3] 。OCT通过测量来自生物组织的背散射光的强度来获取横截面图像,使用低相干干涉测量法以类似于超声脉冲回波成像的方式从内部组织微结构产生光学散射的三维图像,从而显示出被成像组织的各层显微结构 [3] 。OCTA 图像基于来自视网膜血管和神经感觉组织的可变光反向散射,并以临床可行的方式提供可靠、无创伤、高灵敏度的视网膜脉管系统图像,提供基于染料的血管造影方法(如荧光素血管造影)从未有过的高分辨率和深度分辨信息。OCTA图像接近组织学水平的分辨率,可以可靠地显示灌注受损、黄斑区新生血管形成区域、量化不同血管丛的血流密度和病灶面积 [4] 。本文就国内外学者对OCT和OCTA生物学标志物在RVO预后的相关预测指标研究进行综述,为选择RVO的更精准的抗VEGF药物治疗方案提供指导。

2. OCT影像学特征

2.1. 视网膜中心凹厚度

RVO继发性黄斑水肿(RVO-ME)是由血–视网膜屏障损伤引起的液体积聚导致的视网膜增厚。Zhou等 [5] 人研究发现首次抗VEGF治疗后2周的黄斑中心凹厚度(CMT)降低率与6个月时更好的BCVA显著相关。大量研究证实,基线视网膜中心凹厚度(CRT)是抗VEGF治疗后BCVA的预测指标 [6] 。Lashay等 [7] 人在研究中发现雷珠单抗治疗RVO患者6个月后CMT及其他解剖结构的病理改变都有明显改善而地塞米松植入物治疗的患者并没有特别明显改善。Zou [8] 等人研究发现联合治疗(抗VEGF治疗 + 视网膜激光光凝术)和单次IVI治疗均能有效改善RVO患者的BCVA并降低CMT,另外联合治疗可以减少BRVO患者的玻璃体内注射次数,而在CRVO患者中并没有观察到有减少。上述研究提示CRT和CMT的变化是反映RVO严重程度的一个重要指标。

2.2. 视网膜内层结构紊乱

视网膜内层结构紊乱(DRIL)是指在OCT下在超过50%的中心凹1 mm区域内,不能识别神经节细胞–内丛状层复合体(由于神经节细胞层和内丛状层之间的界面在视网膜扫描中不容易看到,因此被评估为单层复合体)、内核层和外丛状层之间的任何分界的状态 [9] 。Berry [10] 等人的研究表明在患有急性CRVO的初治眼≥ 1年随访中DRIL的发生与缺血以及视力(VA)显著相关。Mimouni及其同事在136只患视网膜分支静脉阻塞(BRVO)、半视网膜静脉阻塞(HRVO)和视网膜中央静脉阻塞(CRVO)的眼中探索了DRIL和VA的关系,发现基线DRIL与基线VA相关,并且DRIL的变化可预测抗VEGF药物注射3个月后VA的变化。Amy [11] 等人研究发现抗VEGF药物治疗继发于RVO的ME从基线到6个月所有区域的DRIL评分都有所下降,这表明DRIL是VA结局中潜在有用的生物标志物。

2.3. 高反射点

高反射点(HF)是指在OCT下表现为散在分布、边界清楚的高反射点状病灶,被认为与炎症有关,可能是炎症激活的小胶质细胞,反射强度等同或高于视网膜色素上皮层(RPE),但其性质尚有争议。Uji等 [12] 发现,视网膜外层HF的存在与治疗前糖尿病性黄斑水肿(DME)的基线视力差和解剖结构破坏有关,Huang等 [13] 人研究发现抗VEGF治疗后HF显着降低,并且在接受不同抗VEGF药物治疗的眼睛中HF的降低相似。在RVO-ME的疾病早期,可以观察到HF聚集在视网膜内层,随着ME时间的延长,HF向视网膜外层移动,与小胶质细胞的迁移相对应,因此Ding等 [14] 人推断促进炎症在HF的构象中起关键作用。抗炎治疗较抗VEGF治疗能更好地减少HF数量。Qin等 [15] 人研究表明抗VEGF治疗后RVO-ME患者的VA改善,CMT显着降低,HF也显着下降。尽管HF的性质尚未确定,但提示着与视力预后有关,不同研究的结果不同。

2.4. 外界膜及椭圆体带的完整性

外界膜(ELM)被定义为第一个高反射带,代表胶质细胞Müller与光感受器细胞之间的连接复合体。椭圆体带(EZ)被定义为ELM以下的高反射带,在临床上代表光感受器的完整性。在棕色的挪威大鼠中研究了ELM和EZ的状态,发现ELM和EZ的起源与光感受器细胞的生物活动有关 [16] 。Yiu [17] 等人前瞻性研究202名RVO-ME患者中发现ELM中断与治疗前的基线BCVA独立相关。Thomas [18] 等人回顾性分析了患有RVO-ME的145只眼在治疗12周时和142只眼治疗24周时,12周时EZ完整的患眼平均BCVA为74.4个字母,EZ明显异常(缺失)的患眼平均BCVA为58.0个字母;24周时,EZ完整的患眼平均BCVA为77.6字母,EZ明显异常(缺失)的患眼平均BCVA为60.6字母,表明差异有统计学意义(P ≤ 0.001)。所以EZ和ELM是光感受器完整性的一个重要指标,对维持较好的视力非常重要。

2.5. 脉络膜厚度

脉络膜是营养视网膜外层的主要结构,脉络膜的厚度(SFCT)因部位而异,后极部的厚度最大为0.22 mm,锯齿缘处的厚度减小至0.1 mm,脉络膜组织结构和功能的完整性对视网膜功能至关重要,脉络膜静脉网负责营养视网膜外三分之一组织 [19] 。脉络膜血流异常导致视网膜光感受器功能障碍和光感受器死亡 [19] 。Tang等 [20] 人研究发现继发于CRVO和BRVO的ME眼SFCT明显比对侧眼厚,并且在单次抗VEGF药物注射后短时间内SFCT显着下降。既往研究表明,CRVO患者的SFCT比BRVO患者的明显较厚,与BRVO相比,CRVO患眼的缺血指数和VEGF水平更高,VEGF升高可能是脉络膜厚度增加的主要原因,导致血管通透性过高和脉络膜层血管扩张,这也可以解释CRVO患者的CRT增加 [21] 。

3. OCTA影像学特征

3.1. 视网膜无灌注区

视网膜无灌注区(NPA)的形成与视网膜动静脉阻塞有关,NPA的形成机制尚不清楚,据推测,肿胀的视网膜组织压迫毛细血管、阻塞的静脉产生的压力导致的动脉功能不全,或白细胞在内皮聚集导致的毛细血管闭塞。在视网膜毛细血管变成无灌注之前需要大约3~4周的缺血,Kazutaka等 [22] 在小鼠模型中,NPA在激光诱导CRVO后约7天形成 [23] 。NPA的大小有助于区分RVO患眼的缺血性和非缺血性。NPA由于缺乏血流和氧供不足而分泌VEGF,VEGF的过度表达促进了白细胞的聚集,可能是导致毛细血管阻塞加重的原因,这也是RVO患眼在随访中经常出现NPA增大的原因。RVO的预后和视力结果取决于视网膜缺血的量 [23] 。Coscas等 [24] 人对视网膜静脉阻塞患者进行了OCTA评估,报告说,毛细血管丛的异常在深毛细血管丛(DCP)中明显比浅毛细血管丛(SCP)中更常见。他们得出结论,DCP在视网膜静脉阻塞中受到的影响更严重,与DCP相比,由于与视网膜小动脉直接相连,SCP受累较少,灌注较好,他们还发现OCTA比频域OCT和荧光素血管造影(FFA)能更好的检测黄斑水肿 [25] [26] 。An等 [26] 人研究表明DCP中血流密度(VD)降低与缺血程度的相关性最大。Zhang等 [27] 人在一项为期5年的回顾性研究中发现玻璃体腔地塞米松植入物(DEX)组与抗VEGF组的视网膜灌注密度比值在DCP组高于SCP组。

3.2. 黄斑中心凹无灌注区

黄斑中心凹无灌注区(FAZ)是指黄斑区毛细血管网在中心凹形成无血管区,FAZ一旦受到疾病的影响,会造成不同程度的视力丧失,因此早期监测和评估FAZ状态可为疾病的预防进展提供客观依据,FAZ的测量指标包括:FAZ面积、FAZ周长、中心凹血流密度(FVD) [28] 。OCTA可以提供视网膜和脉络膜血管形成的结构和功能信息,并在固定时间点检测血液流动,此外,由于毛细血管信息的高分辨率,OCTA可以测量FAZ的面积 [29] 。先前的研究表明,健康受试者平均生理FAZ面积为200~400 μm2,RVO可导致FAZ扩大,FAZ的测量可客观评估黄斑缺血,进而评估视力预后 [30] [31] 。Tripathy等 [31] 人研究表明视网膜灌注不良(VD和VLD)与BCVA呈负相关。Adhi等 [30] 发现,与健康受试者相比,RVO患者的FAZ面积越大,VD越低。Omer等 [32] 对28名患者回顾性研究发现在严重病理的情况下,使用自动算法计算FAZ大小是不可靠的,其中FAZ由于出血或缺血而与视网膜中的无流动区域合并,为了克服这一困难,使用半自动算法对整研究个病理数据计算每种病理的平均FAZ大小。Song等 [33] 人研究发现非缺血性视网膜静脉阻塞(非iRVO)的眼睛在抗VEGF治疗6个月后FAZ面积减小,而缺血性视网膜静脉阻塞(iRVO)患者的眼睛FAZ面积没有显着差异,这可能是由于缺血导致iRVO患者的视网膜毛细血管不可逆损伤。

3.3. 血流密度

在OCTA中,总VD分为SCP和DCP,浅表性VD的状态与黄斑水肿的发生有关,而深丛中的VD对光感受器和视网膜外层的氧需求很重要 [34] 。Priscilla等 [35] 人研究表明认为,微血管的改变,例如RVO的MNP区域,在深丛中比在浅丛中更明显,因此深部 VD 与脉络膜毛细血管层血流有关,更易发生缺血。Ouederni等 [36] 人说到事实上,VD的降低可能是由于低灌注流量或毛细血管稀薄所致,为了量化毛细血管灌注,我们测量了VD(代表血管所占面积的比例)和骨骼密度(SD) (代表不依赖血管口径的整个视网膜血管网的长度),我们的研究结果显示,RVO患眼的SCP和DCP的血管和骨骼密度显著低于对侧眼,除了黄斑中心凹无血管区域的VD。Brian等 [37] 在一项横断面研究中发现黄斑和周边视网膜VD降低与RVO患者需要持续注射抗VEGF玻璃体内有关,缺血性损伤与VEGF分泌增加有关,先前的研究发现会增加视网膜血管通透性和新生血管形成,因此需要更多的注射,也可能是持续的抗VEGF治疗减少了视网膜中新生血管的形成,这解释了与连续治疗相关的VD降低的原因。

3.4. 视盘周围放射状毛细血管密度

视神经的血流由睫状后动脉和视网膜中央动脉供应,这些动脉也供应视神经的浅层视网膜周围神经纤维层(RNFL),流向RNFL的血液来自视网膜放射状视盘周围毛细血管(RPC)的微循环供应,常规FFA难以观察到RPC,OCTA在评价视神经乳头(ONH)灌注方面具有一定优势,由于其高轴向分辨率,它可以实现RPC的可视化,并可以量化微血管灌注 [38] [39] 。Fan等 [40] 人在OCTA中使用不同的测量方法进一步分析了RPC密度与RNFL厚度之间的关系,结果显示所有测量均呈显著正相关,表明RPC密度的降低可能导致单侧RVO患者眼部周围RNFL变薄,换句话说,RPC微循环的变化导致RVO同眼的结构变化。Shin等 [38] 人回顾性研究发现在OCTA中单侧BRVO患者的对侧健眼RPC和VD较低,说明即使在未受影响的对侧眼,RVO也可能导致其视盘血管结构异常。

3.5. 侧支血管

在视网膜静脉阻塞的情况下,静脉侧支是促进血液从阻塞静脉流向邻近无阻塞静脉的途径,是一个继发现象,由阻塞后视网膜血管内的压力和流动特性改变引起 [41] 。侧支血管位于视网膜内,不像新生血管位于视网膜前方,侧支血管对于改善视网膜静脉阻塞后的视力不是必需的。Arrigo等 [42] 人研究表明,侧支血管扩张与RVO患者较差的解剖和功能结局相关。Lee [43] 等对25只RVO眼睛中的43条侧支血管的横断面研究表明,OCTA中浅表和深层毛细血管网中的VD与侧支血管的发展显着相关。Takahashi等 [44] 人发现OCTA检查中侧支血管位于视网膜毛细血管床的深处,并且还发现当一条静脉和一条相邻动脉同时闭塞时,不会形成侧支血管。

4. 总结与展望

ME是RVO视力损害的最重要原因,反复的ME是多种因素参与的病理生理过程导致的。OCT是评估、检测和随访ME的金标准,也可以清晰地观察到视网膜、脉络膜病变的细微结构,是早期发现、预防和诊断RVO的重要影像学检查。OCTA是基于OCT发展起来的影像学技术,OCTA图像接近组织学水平的分辨率,可以可靠地显示灌注受损、微动脉瘤、毛细血管重塑、某些类型的视网膜内液体和黄斑区内新生血管形成区域,还可以检测到传统染料血管造影中无法提供的病理特征,能可视化所有神经丛,检测FFA中无法提供的病理特征。此外,作为一种无创和快速的检查,对于需要频繁随访检查的患者提供了FFA不能提供的便利。但FFA仍然是视网膜血管评估的黄金标准,可以观察到有无渗漏,还可用于评估外周和黄斑缺血的程度;然而,FFA非常耗时,并且有可能引起过敏反应,由于FFA不能显示深层毛细血管或侧支血管的视网膜内位置,因此需要使用高分辨率,深度分辨成像更好地定义视网膜侧支循环的模式。OCTA技术的进步显著增强了我们对视网膜毛细血管丛的认识。未来OCTA可以进一步提高扫描的速度,减少伪影,改进血管成像算法,能获得到更精准的数据。

OCT和OCTA影像学特征与RVO的病情变化及治疗后视力预后密切相关,这为评估RVO的病情严重程度、调整治疗方案、监测治疗效果及判断疾病预后提供了重要的参考。

参考文献

参考文献

[1] Song, P., Xu, Y., Zha, M., Zhang, Y. and Rudan, I. (2019) Global Epidemiology of Retinal Vein Occlusion: A Systematic Review and Meta-Analysis of Prevalence, Incidence, and Risk Factors. Journal for Global Health, 9, Article ID: 010427.
https://doi.org/10.7189/jogh.09.010427
[2] Campa, C., Alivernini, G., Bolletta, E., Parodi, M.B. and Perri, P. (2016) Anti-VEGF Therapy for Retinal Vein Occlusions. Current Drug Targets, 17, 328-336.
https://doi.org/10.2174/1573399811666150615151324
[3] Huang, D., Swanson, E.A., Lin, C.P., Schuman, J.S., Stinson, W.G., Chang, W., Hee, M.R., Flotte, T., Gregory, K., Puliafito, C.A., et al. (1991) Optical Coherence Tomography. Science, 254, 1178-1181.
https://doi.org/10.1126/science.1957169
[4] Kashani, A.H., Chen, C.L., Gahm, J.K., Zheng, F., Richter, G.M., Rosenfeld, P.J., Shi, Y. and Wang, R.K. (2017) Optical Coherence Tomography Angiography: A Comprehensive Review of Current Methods and Clinical Applications. Progress in Retinal and Eye Research, 60, 66-100.
https://doi.org/10.1016/j.preteyeres.2017.07.002
[5] Zhou, J., Ma, H., Zhou, X., Wang, Q., Li, W., Luo, S., Cai, C., Li, Z. and Liu, D. (2022) Two-Week Central Macular Thickness Reduction Rate >37% Predicts the Long-Term Efficacy of Anti-Vascular Endothelial Growth Factor Treatment for Macular Edema Secondary to Retinal Vein Occlusion. Frontiers in Medicine, 9, Article 851238.
https://doi.org/10.3389/fmed.2022.851238
[6] Michl, M., Liu, X., Kaider, A., Sadeghipour, A., Gerendas, B.S. and Schmidt-Erfurth, U. (2021) The Impact of Structural Optical Coherence Tomography Changes on Visual Function in Retinal Vein Occlusion. Acta Ophthalmologica, 99, 418-426.
https://doi.org/10.1111/aos.14621
[7] Lashay, A., Riazi-Esfahani, H., Mirghorbani, M. and Yaseri, M. (2019) Intravitreal Medications for Retinal Vein Occlusion: Systematic Review and Meta-Analysis. Journal of Ophthalmic and Vision Research, 14, 336-366.
https://doi.org/10.18502/jovr.v14i3.4791
[8] Zou, W., Du, Y., Ji, X., Zhang, J., Ding, H., Chen, J., Wang, T., Ji, F. and Huang, J. (2022) Comparison of the Efficiency of Anti-Vegf Drugs Intravitreal Injections Treatment with or without Retinal Laser Photocoagulation for Macular Edema Secondary to Retinal Vein Occlusion: A Systematic Review and Meta-Analysis. Frontiers in Pharmacology, 13, Article 948852.
https://doi.org/10.3389/fphar.2022.948852
[9] Zhou, J., Song, S., Zhang, Y., Jin, K. and Ye, J. (2022) OCT-Based Biomarkers are Associated with Systemic Inflammation in Patients with Treatment-Naïve Diabetic Macular Edema. Ophthalmology and Therapy, 11, 2153-2167.
https://doi.org/10.1007/s40123-022-00576-x
[10] Berry, D., Thomas, A.S., Fekrat, S. and Grewal, D.S. (2018) Association of Disorganization of Retinal Inner Layers with Ischemic Index and Visual Acuity in Central Retinal Vein Occlusion. Ophthalmology Retina, 2, 1125-1132.
https://doi.org/10.1016/j.oret.2018.04.019
[11] Babiuch, A.S., Han, M., Conti, F.F., Wai, K., Silva, F.Q. and Singh, R.P. (2019) Association of Disorganization of Retinal Inner Layers with Visual Acuity Response to Anti-Vascular Endothelial Growth Factor Therapy for Macular Edema Secondary to Retinal Vein Occlusion. JAMA Ophthalmology, 137, 38-46.
https://doi.org/10.1001/jamaophthalmol.2018.4484
[12] 张钟月, 刘小虎, 王利萍, 等. 视网膜静脉阻塞发生发展的眼部生物标记物研究进展[J]. 国际眼科杂志, 2022, 22(12): 2005-2009.
[13] Huang, C.-H., Yang, C.-H., Hsieh, Y.-T., Yang, C.-M., Ho, T.-C. and Lai, T.-T. (2021) Hyperreflective Foci in Predicting the Treatment Outcomes of Diabetic Macular Oedema after Anti-Vascular Endothelial Growth Factor Therapy. Scientific Reports, 11, Article No. 5103.
https://doi.org/10.1038/s41598-021-84553-7
[14] Ding, X., Hu, Y., Yu, H. and Li, Q. (2022) Changes of Optical Coherence Tomography Biomarkers in Macular Edema Secondary to Retinal Vein Occlusion after Anti-VEGF and Anti-Inflammatory Therapies. Drug Design, Development and Therapy, 16, 717-725.
https://doi.org/10.2147/DDDT.S351683
[15] Qin, H.-F., Shi, F.-J., Zhang, C.-Y., Luo, D.-W., Qin, S.-Y., Wu, J., Xie, H., Zhang, J.-T., Qiu, Q.-H., Liu, K., Xu, G.-T., Xu, G.-X. and Zhang, J.-F. (2022) Anti-VEGF Reduces Inflammatory Features in Macular Edema Secondary to Retinal Vein Occlusion. International Journal of Ophthalmology, 15, 1296-1304.
https://doi.org/10.18240/ijo.2022.08.11
[16] Saxena, S., Meyer, C.H. and Akduman, L. (2022) External Limiting Membrane and Ellipsoid Zone Structural Integrity in Diabetic Macular Edema. European Journal of Ophthalmology, 32, 15-16.
https://doi.org/10.1177/11206721211026106
[17] Yiu, G., Welch, R.J., Wang, Y., Wang, Z., Wang, P.-W. and Haskova, Z. (2020) Spectral-Domain OCT Predictors of Visual Outcomes after Ranibizumab Treatment for Macular Edema Resulting from Retinal Vein Occlusion. Ophthalmology Retina, 4, 67-76.
https://doi.org/10.1016/j.oret.2019.08.009
[18] Ciulla, T.A., Kapik, B., Hu, A., Harris, A., Ip, M.S. and Blodi, B. (2022) Anatomic Biomarkers of Macular Edema Associated with Retinal Vein Occlusion. Ophthalmology Retina, 6, 1206-1220.
https://doi.org/10.1016/j.oret.2022.06.016
[19] Pichi, F., Aggarwal, K., Neri, P., Salvetti, P., Lembo, A., Nucci, P., Gemmy Cheung, C.M. and Gupta, V. (2018) Choroidal Biomarkers. Indian Journal of Ophthalmology, 66, 1716-1726.
https://doi.org/10.4103/ijo.IJO_893_18
[20] Tang, F., Xu, F., Zhong, H., Zhao, X., Lv, M., Yang, K., Shen, C., Huang, H., Lv, J., Zeng, S., Li, M. and Chen, Q. (2019) Comparison of Subfoveal Choroidal Thickness in Eyes with CRVO and BRVO. BMC Ophthalmology, 19, Article No. 133.
https://doi.org/10.1186/s12886-019-1143-9
[21] Loiudice, P., Covello, G., Figus, M., Posarelli, C., Sartini, M.S. and Casini, G. (2022) Choroidal Vascularity Index in Central and Branch Retinal Vein Occlusion. Journal of Clinical Medicine, 11, Article No. 4756.
https://doi.org/10.3390/jcm11164756
[22] Hirabayashi, K., Tanaka, M., Imai, A., Toriyama, Y., Iesato, Y., Sakurai, T., Kamiyoshi, A., Ichikawa-Shindo, Y., Kawate, H., Tanaka, M., Dai, K., Cui, N., Wei, Y., Nakamura, K., Iida, S., Matsui, S., Yamauchi, A., Murata, T. and Shindo, T. (2019) Development of a Novel Model of Central Retinal Vascular Occlusion and the Therapeutic Potential of the Adrenomedullin-Receptor Activity-Modifying Protein 2 System. The American Journal of Pathology, 189, 449-466.
https://doi.org/10.1016/j.ajpath.2018.10.021
[23] Hirano, Y., Suzuki, N., Tomiyasu, T., Kurobe, R., Yasuda, Y., Esaki, Y., Yasukawa, T., Yoshida, M. and Ogura, Y. (2021) Multimodal Imaging of Microvascular Abnormalities in Retinal Vein Occlusion. Journal of Clinical Medicine, 10, Article No. 405.
https://doi.org/10.3390/jcm10030405
[24] Choi, K.-E., Yun, C., Cha, J. and Kim, S.-W. (2019) OCT Angiography Features Associated with Macular Edema Recurrence after Intravitreal Bevacizumab Treatment in Branch Retinal Vein Occlusion. Scientific Reports, 9, Article No. 14153.
https://doi.org/10.1038/s41598-019-50637-8
[25] Khodabandeh, A., Shahraki, K., Roohipoor, R., Riazi-Esfahani, H., Yaseri, M., Faghihi, H. and Bazvand, F. (2018) Quantitative Measurement of Vascular Density and Flow Using Optical Coherence Tomography Angiography (OCTA) in Patients with Central Retinal Vein Occlusion: Can OCTA Help in Distinguishing Ischemic from Non-Ischemic Type? International Journal of Retina and Vitreous, 4, Article No. 47.
https://doi.org/10.1186/s40942-018-0152-9
[26] An, W., Zhao, Q., Yu, R. and Han, J. (2022) The Role of Optical Coherence Tomography Angiography in Distinguishing Ischemic versus Non-Ischemic Central Retinal Vein Occlusion. BMC Ophthalmology, 22, Article No. 413.
https://doi.org/10.1186/s12886-022-02637-y
[27] Zhang, M., Liu, Y., Song, M., Yu, Y., Ruan, S., Zheng, K., Wang, F. and Sun, X. (2023) Intravitreal Dexamethasone Implant Has Better Retinal Perfusion than Anti-Vascular Endothelial Growth Factor Treatment for Macular Edema Secondary to Retinal Vein Occlusion: A Five-Year Real-World Study. Ophthalmic Research, 66, 247-258.
https://doi.org/10.1159/000527447
[28] Qu, S., Rong, A., Niu, Y.-L., Liu, X., Zhang, Y.-S., Liu, C.-Y. and Bi, Y.-L. (2022) Reproducibility of Macular Perfusion Parameters in Non-Proliferative Diabetic Retinopathy Patients by Two Different OCTA Sweep Modes. International Journal of Ophthalmology, 15, 1483-1487.
https://doi.org/10.18240/ijo.2022.09.11
[29] Kashani, A.H., Chen, C.-L., Gahm, J.K., Zheng, F., Richter, G.M., Rosenfeld, P.J., Shi, Y. and Wang, R.K. (2017) Optical Coherence Tomography Angiography: A Comprehensive Review of Current Methods and Clinical Applications. Progress in Retinal and Eye Research, 60, 66-100.
https://doi.org/10.1016/j.preteyeres.2017.07.002
[30] Adhi, M., Filho, M.A., Louzada, R.N., Kuehlewein, L., de Carlo, T.E., Baumal, C.R., Witkin, A.J., Sadda, S.R., Sarraf, D., Reichel, E., Duker, J.S. and Waheed, N.K. (2016) Retinal Capillary Network and Foveal Avascular Zone in Eyes with Vein Occlusion and Fellow Eyes Analyzed with Optical Coherence Tomography Angiography. Investigative Ophthalmology & Visual Science, 57, OCT486-OCT494.
https://doi.org/10.1167/iovs.15-18907
[31] Tripathy, S., Le, H.-G., Cicinelli, M.V. and Gill, M.K. (2021) Longitudinal Changes on Optical Coherence Tomography Angiography in Retinal Vein Occlusion. Journal of Clinical Medicine, 10, Article No. 1423.
https://doi.org/10.3390/jcm10071423
[32] Aharony, O., Gal-Or, O., Polat, A., Nahum, Y., Weinberger, D. and Zimmer, Y. (2019) Automatic Characterization of Retinal Blood Flow Using OCT Angiograms. Translational Vision Science & Technology, 8, Article 6.
https://doi.org/10.1167/tvst.8.4.6
[33] Song, W., Jiao, W., Li, F., Ma, A. and Zhao, B. (2020) Evaluation of Microvascular Structure Changes after Conbercept Treatment on Macular Edema Secondary to Retinal Vein Occlusion. BioMed Research International, 2020, Article ID: 9046781.
https://doi.org/10.1155/2020/9046781
[34] Ota, M., Tsujikawa, A., Murakami, T., Kita, M., Miyamoto, K., Sakamoto, A., Yamaike, N. and Yoshimura, N. (2007) Association between Integrity of Foveal Photoreceptor Layer and Visual Acuity in Branch Retinal Vein Occlusion. British Journal of Ophthalmology, 91, 1644-1649.
https://doi.org/10.1136/bjo.2007.118497
[35] Tan, P.E.Z., Yu, P.K., Balaratnasingam, C., Cringle, S.J., Morgan, W.H., McAllister, I.L. and Yu, D.-Y. (2012) Quantitative Confocal Imaging of the Retinal Microvasculature in the Human Retina. Investigative Ophthalmology & Visual Science, 53, 5728-5736.
https://doi.org/10.1167/iovs.12-10017
[36] Ouederni, M., Khalifa, M.B.H., Sassi, H., Nefaa, F., Ayed, O. and Cheour, M. (2022) Quantitative Analysis of Microvascular Network with Optical Coherence Tomography Angiography and Its Correlation with Visual Acuity in Retinal Vein Occlusion. Journal of Current Ophthalmology, 33, 453-460.
https://doi.org/10.4103/joco.joco_163_21
[37] Cheng, B.T., Mishra, S., Bryan, J.M., Sadiq, S.A., Sklar, N.C., Suen, E.G., Mohammed, T.O. and Mirza, R.G. (2022) Retinal Vessel Density and Treatment Intensity among Adults with Retinal Vein Occlusion: A Swept-Source Optical Coherence Tomography Angiography Study. Journal of Clinical Medicine, 11, Article No. 2892.
https://doi.org/10.3390/jcm11102892
[38] Shin, Y.-I., Nam, K.Y., Lee, S.E., Lim, H.-B., Lee, M.W., Jo, Y.-J. and Kim, J.-Y. (2019) Changes in Peripapillary Microvasculature and Retinal Thickness in the Fellow Eyes of Patients with Unilateral Retinal Vein Occlusion: An OCTA Study. Investigative Ophthalmology & Visual Science, 60, 823-829.
https://doi.org/10.1167/iovs.18-26288
[39] Mansoori, T. and Balakrishna, N. (2019) Peripapillary Vessel Density and Retinal Nerve Fiber Layer Thickness in Patients with Unilateral Primary Angle Closure Glaucoma with Superior Hemifield Defect. Journal of Current Glaucoma Practice, 13, 21-27.
https://doi.org/10.5005/jp-journals-10078-1247
[40] Fan, L., Zhu, Y., Sun, X., Yu, J. and Yan, H. (2021) Patients with Unilateral Retinal Vein Occlusion Show Reduced Radial Peripapillary Capillary Density in Their Fellow Eyes. BMC Ophthalmology, 21, Article No. 448.
https://doi.org/10.1186/s12886-021-02192-y
[41] Weinberg, D.V., Wahle, A.E., Ip, M.S., Scott, I.U., VanVeldhuisen, P.C. and Blodi, B.A. (2013) Score Study Report 12: Development of Venous Collaterals in the Score Study. Retina, 33, 287-295.
https://doi.org/10.1097/IAE.0b013e318263d106
[42] Arrigo, A., Aragona, E., Lattanzio, R., Scalia, G., Bandello, F. and Parodi, M.B. (2021) Collateral Vessel Development in Central and Branch Retinal Vein Occlusions Are Associated with Worse Visual and Anatomic Outcomes. Investigative Ophthalmology & Visual Science, 62, Article 1.
https://doi.org/10.1167/iovs.62.14.1
[43] Lee, H.E., Wang, Y., Fayed, A.E. and Fawzi, A.A. (2019) Exploring the Relationship between Collaterals and Vessel Density in Retinal Vein Occlusions Using Optical Coherence Tomography Angiography. PLOS ONE, 14, e0215790.
https://doi.org/10.1371/journal.pone.0215790
[44] Takahashi, H., Nakagawa, K., Yamada, H., Mori, H., Oba, S., Toyama, K. and Takahashi, K. (2021) Time Course of Collateral Vessel Formation after Retinal Vein Occlusion Visualized by OCTA and Elucidation of Factors in Their Formation. Heliyon, 7, e05902.
https://doi.org/10.1016/j.heliyon.2021.e05902

为你推荐


Baidu
map