[1] |
Song, P., Xu, Y., Zha, M., Zhang, Y. and Rudan, I. (2019) Global Epidemiology of Retinal Vein Occlusion: A Systematic Review and Meta-Analysis of Prevalence, Incidence, and Risk Factors. Journal for Global Health, 9, Article ID: 010427. https://doi.org/10.7189/jogh.09.010427 |
[2] |
Campa, C., Alivernini, G., Bolletta, E., Parodi, M.B. and Perri, P. (2016) Anti-VEGF Therapy for Retinal Vein Occlusions. Current Drug Targets, 17, 328-336. https://doi.org/10.2174/1573399811666150615151324 |
[3] |
Huang, D., Swanson, E.A., Lin, C.P., Schuman, J.S., Stinson, W.G., Chang, W., Hee, M.R., Flotte, T., Gregory, K., Puliafito, C.A., et al. (1991) Optical Coherence Tomography. Science, 254, 1178-1181. https://doi.org/10.1126/science.1957169 |
[4] |
Kashani, A.H., Chen, C.L., Gahm, J.K., Zheng, F., Richter, G.M., Rosenfeld, P.J., Shi, Y. and Wang, R.K. (2017) Optical Coherence Tomography Angiography: A Comprehensive Review of Current Methods and Clinical Applications. Progress in Retinal and Eye Research, 60, 66-100. https://doi.org/10.1016/j.preteyeres.2017.07.002 |
[5] |
Zhou, J., Ma, H., Zhou, X., Wang, Q., Li, W., Luo, S., Cai, C., Li, Z. and Liu, D. (2022) Two-Week Central Macular Thickness Reduction Rate >37% Predicts the Long-Term Efficacy of Anti-Vascular Endothelial Growth Factor Treatment for Macular Edema Secondary to Retinal Vein Occlusion. Frontiers in Medicine, 9, Article 851238. https://doi.org/10.3389/fmed.2022.851238 |
[6] |
Michl, M., Liu, X., Kaider, A., Sadeghipour, A., Gerendas, B.S. and Schmidt-Erfurth, U. (2021) The Impact of Structural Optical Coherence Tomography Changes on Visual Function in Retinal Vein Occlusion. Acta Ophthalmologica, 99, 418-426. https://doi.org/10.1111/aos.14621 |
[7] |
Lashay, A., Riazi-Esfahani, H., Mirghorbani, M. and Yaseri, M. (2019) Intravitreal Medications for Retinal Vein Occlusion: Systematic Review and Meta-Analysis. Journal of Ophthalmic and Vision Research, 14, 336-366. https://doi.org/10.18502/jovr.v14i3.4791 |
[8] |
Zou, W., Du, Y., Ji, X., Zhang, J., Ding, H., Chen, J., Wang, T., Ji, F. and Huang, J. (2022) Comparison of the Efficiency of Anti-Vegf Drugs Intravitreal Injections Treatment with or without Retinal Laser Photocoagulation for Macular Edema Secondary to Retinal Vein Occlusion: A Systematic Review and Meta-Analysis. Frontiers in Pharmacology, 13, Article 948852. https://doi.org/10.3389/fphar.2022.948852 |
[9] |
Zhou, J., Song, S., Zhang, Y., Jin, K. and Ye, J. (2022) OCT-Based Biomarkers are Associated with Systemic Inflammation in Patients with Treatment-Naïve Diabetic Macular Edema. Ophthalmology and Therapy, 11, 2153-2167. https://doi.org/10.1007/s40123-022-00576-x |
[10] |
Berry, D., Thomas, A.S., Fekrat, S. and Grewal, D.S. (2018) Association of Disorganization of Retinal Inner Layers with Ischemic Index and Visual Acuity in Central Retinal Vein Occlusion. Ophthalmology Retina, 2, 1125-1132. https://doi.org/10.1016/j.oret.2018.04.019 |
[11] |
Babiuch, A.S., Han, M., Conti, F.F., Wai, K., Silva, F.Q. and Singh, R.P. (2019) Association of Disorganization of Retinal Inner Layers with Visual Acuity Response to Anti-Vascular Endothelial Growth Factor Therapy for Macular Edema Secondary to Retinal Vein Occlusion. JAMA Ophthalmology, 137, 38-46. https://doi.org/10.1001/jamaophthalmol.2018.4484 |
[12] |
张钟月, 刘小虎, 王利萍, 等. 视网膜静脉阻塞发生发展的眼部生物标记物研究进展[J]. 国际眼科杂志, 2022, 22(12): 2005-2009. |
[13] |
Huang, C.-H., Yang, C.-H., Hsieh, Y.-T., Yang, C.-M., Ho, T.-C. and Lai, T.-T. (2021) Hyperreflective Foci in Predicting the Treatment Outcomes of Diabetic Macular Oedema after Anti-Vascular Endothelial Growth Factor Therapy. Scientific Reports, 11, Article No. 5103. https://doi.org/10.1038/s41598-021-84553-7 |
[14] |
Ding, X., Hu, Y., Yu, H. and Li, Q. (2022) Changes of Optical Coherence Tomography Biomarkers in Macular Edema Secondary to Retinal Vein Occlusion after Anti-VEGF and Anti-Inflammatory Therapies. Drug Design, Development and Therapy, 16, 717-725. https://doi.org/10.2147/DDDT.S351683 |
[15] |
Qin, H.-F., Shi, F.-J., Zhang, C.-Y., Luo, D.-W., Qin, S.-Y., Wu, J., Xie, H., Zhang, J.-T., Qiu, Q.-H., Liu, K., Xu, G.-T., Xu, G.-X. and Zhang, J.-F. (2022) Anti-VEGF Reduces Inflammatory Features in Macular Edema Secondary to Retinal Vein Occlusion. International Journal of Ophthalmology, 15, 1296-1304. https://doi.org/10.18240/ijo.2022.08.11 |
[16] |
Saxena, S., Meyer, C.H. and Akduman, L. (2022) External Limiting Membrane and Ellipsoid Zone Structural Integrity in Diabetic Macular Edema. European Journal of Ophthalmology, 32, 15-16. https://doi.org/10.1177/11206721211026106 |
[17] |
Yiu, G., Welch, R.J., Wang, Y., Wang, Z., Wang, P.-W. and Haskova, Z. (2020) Spectral-Domain OCT Predictors of Visual Outcomes after Ranibizumab Treatment for Macular Edema Resulting from Retinal Vein Occlusion. Ophthalmology Retina, 4, 67-76. https://doi.org/10.1016/j.oret.2019.08.009 |
[18] |
Ciulla, T.A., Kapik, B., Hu, A., Harris, A., Ip, M.S. and Blodi, B. (2022) Anatomic Biomarkers of Macular Edema Associated with Retinal Vein Occlusion. Ophthalmology Retina, 6, 1206-1220. https://doi.org/10.1016/j.oret.2022.06.016 |
[19] |
Pichi, F., Aggarwal, K., Neri, P., Salvetti, P., Lembo, A., Nucci, P., Gemmy Cheung, C.M. and Gupta, V. (2018) Choroidal Biomarkers. Indian Journal of Ophthalmology, 66, 1716-1726. https://doi.org/10.4103/ijo.IJO_893_18 |
[20] |
Tang, F., Xu, F., Zhong, H., Zhao, X., Lv, M., Yang, K., Shen, C., Huang, H., Lv, J., Zeng, S., Li, M. and Chen, Q. (2019) Comparison of Subfoveal Choroidal Thickness in Eyes with CRVO and BRVO. BMC Ophthalmology, 19, Article No. 133. https://doi.org/10.1186/s12886-019-1143-9 |
[21] |
Loiudice, P., Covello, G., Figus, M., Posarelli, C., Sartini, M.S. and Casini, G. (2022) Choroidal Vascularity Index in Central and Branch Retinal Vein Occlusion. Journal of Clinical Medicine, 11, Article No. 4756. https://doi.org/10.3390/jcm11164756 |
[22] |
Hirabayashi, K., Tanaka, M., Imai, A., Toriyama, Y., Iesato, Y., Sakurai, T., Kamiyoshi, A., Ichikawa-Shindo, Y., Kawate, H., Tanaka, M., Dai, K., Cui, N., Wei, Y., Nakamura, K., Iida, S., Matsui, S., Yamauchi, A., Murata, T. and Shindo, T. (2019) Development of a Novel Model of Central Retinal Vascular Occlusion and the Therapeutic Potential of the Adrenomedullin-Receptor Activity-Modifying Protein 2 System. The American Journal of Pathology, 189, 449-466. https://doi.org/10.1016/j.ajpath.2018.10.021 |
[23] |
Hirano, Y., Suzuki, N., Tomiyasu, T., Kurobe, R., Yasuda, Y., Esaki, Y., Yasukawa, T., Yoshida, M. and Ogura, Y. (2021) Multimodal Imaging of Microvascular Abnormalities in Retinal Vein Occlusion. Journal of Clinical Medicine, 10, Article No. 405. https://doi.org/10.3390/jcm10030405 |
[24] |
Choi, K.-E., Yun, C., Cha, J. and Kim, S.-W. (2019) OCT Angiography Features Associated with Macular Edema Recurrence after Intravitreal Bevacizumab Treatment in Branch Retinal Vein Occlusion. Scientific Reports, 9, Article No. 14153. https://doi.org/10.1038/s41598-019-50637-8 |
[25] |
Khodabandeh, A., Shahraki, K., Roohipoor, R., Riazi-Esfahani, H., Yaseri, M., Faghihi, H. and Bazvand, F. (2018) Quantitative Measurement of Vascular Density and Flow Using Optical Coherence Tomography Angiography (OCTA) in Patients with Central Retinal Vein Occlusion: Can OCTA Help in Distinguishing Ischemic from Non-Ischemic Type? International Journal of Retina and Vitreous, 4, Article No. 47. https://doi.org/10.1186/s40942-018-0152-9 |
[26] |
An, W., Zhao, Q., Yu, R. and Han, J. (2022) The Role of Optical Coherence Tomography Angiography in Distinguishing Ischemic versus Non-Ischemic Central Retinal Vein Occlusion. BMC Ophthalmology, 22, Article No. 413. https://doi.org/10.1186/s12886-022-02637-y |
[27] |
Zhang, M., Liu, Y., Song, M., Yu, Y., Ruan, S., Zheng, K., Wang, F. and Sun, X. (2023) Intravitreal Dexamethasone Implant Has Better Retinal Perfusion than Anti-Vascular Endothelial Growth Factor Treatment for Macular Edema Secondary to Retinal Vein Occlusion: A Five-Year Real-World Study. Ophthalmic Research, 66, 247-258. https://doi.org/10.1159/000527447 |
[28] |
Qu, S., Rong, A., Niu, Y.-L., Liu, X., Zhang, Y.-S., Liu, C.-Y. and Bi, Y.-L. (2022) Reproducibility of Macular Perfusion Parameters in Non-Proliferative Diabetic Retinopathy Patients by Two Different OCTA Sweep Modes. International Journal of Ophthalmology, 15, 1483-1487. https://doi.org/10.18240/ijo.2022.09.11 |
[29] |
Kashani, A.H., Chen, C.-L., Gahm, J.K., Zheng, F., Richter, G.M., Rosenfeld, P.J., Shi, Y. and Wang, R.K. (2017) Optical Coherence Tomography Angiography: A Comprehensive Review of Current Methods and Clinical Applications. Progress in Retinal and Eye Research, 60, 66-100. https://doi.org/10.1016/j.preteyeres.2017.07.002 |
[30] |
Adhi, M., Filho, M.A., Louzada, R.N., Kuehlewein, L., de Carlo, T.E., Baumal, C.R., Witkin, A.J., Sadda, S.R., Sarraf, D., Reichel, E., Duker, J.S. and Waheed, N.K. (2016) Retinal Capillary Network and Foveal Avascular Zone in Eyes with Vein Occlusion and Fellow Eyes Analyzed with Optical Coherence Tomography Angiography. Investigative Ophthalmology & Visual Science, 57, OCT486-OCT494. https://doi.org/10.1167/iovs.15-18907 |
[31] |
Tripathy, S., Le, H.-G., Cicinelli, M.V. and Gill, M.K. (2021) Longitudinal Changes on Optical Coherence Tomography Angiography in Retinal Vein Occlusion. Journal of Clinical Medicine, 10, Article No. 1423. https://doi.org/10.3390/jcm10071423 |
[32] |
Aharony, O., Gal-Or, O., Polat, A., Nahum, Y., Weinberger, D. and Zimmer, Y. (2019) Automatic Characterization of Retinal Blood Flow Using OCT Angiograms. Translational Vision Science & Technology, 8, Article 6. https://doi.org/10.1167/tvst.8.4.6 |
[33] |
Song, W., Jiao, W., Li, F., Ma, A. and Zhao, B. (2020) Evaluation of Microvascular Structure Changes after Conbercept Treatment on Macular Edema Secondary to Retinal Vein Occlusion. BioMed Research International, 2020, Article ID: 9046781. https://doi.org/10.1155/2020/9046781 |
[34] |
Ota, M., Tsujikawa, A., Murakami, T., Kita, M., Miyamoto, K., Sakamoto, A., Yamaike, N. and Yoshimura, N. (2007) Association between Integrity of Foveal Photoreceptor Layer and Visual Acuity in Branch Retinal Vein Occlusion. British Journal of Ophthalmology, 91, 1644-1649. https://doi.org/10.1136/bjo.2007.118497 |
[35] |
Tan, P.E.Z., Yu, P.K., Balaratnasingam, C., Cringle, S.J., Morgan, W.H., McAllister, I.L. and Yu, D.-Y. (2012) Quantitative Confocal Imaging of the Retinal Microvasculature in the Human Retina. Investigative Ophthalmology & Visual Science, 53, 5728-5736. https://doi.org/10.1167/iovs.12-10017 |
[36] |
Ouederni, M., Khalifa, M.B.H., Sassi, H., Nefaa, F., Ayed, O. and Cheour, M. (2022) Quantitative Analysis of Microvascular Network with Optical Coherence Tomography Angiography and Its Correlation with Visual Acuity in Retinal Vein Occlusion. Journal of Current Ophthalmology, 33, 453-460. https://doi.org/10.4103/joco.joco_163_21 |
[37] |
Cheng, B.T., Mishra, S., Bryan, J.M., Sadiq, S.A., Sklar, N.C., Suen, E.G., Mohammed, T.O. and Mirza, R.G. (2022) Retinal Vessel Density and Treatment Intensity among Adults with Retinal Vein Occlusion: A Swept-Source Optical Coherence Tomography Angiography Study. Journal of Clinical Medicine, 11, Article No. 2892. https://doi.org/10.3390/jcm11102892 |
[38] |
Shin, Y.-I., Nam, K.Y., Lee, S.E., Lim, H.-B., Lee, M.W., Jo, Y.-J. and Kim, J.-Y. (2019) Changes in Peripapillary Microvasculature and Retinal Thickness in the Fellow Eyes of Patients with Unilateral Retinal Vein Occlusion: An OCTA Study. Investigative Ophthalmology & Visual Science, 60, 823-829. https://doi.org/10.1167/iovs.18-26288 |
[39] |
Mansoori, T. and Balakrishna, N. (2019) Peripapillary Vessel Density and Retinal Nerve Fiber Layer Thickness in Patients with Unilateral Primary Angle Closure Glaucoma with Superior Hemifield Defect. Journal of Current Glaucoma Practice, 13, 21-27. https://doi.org/10.5005/jp-journals-10078-1247 |
[40] |
Fan, L., Zhu, Y., Sun, X., Yu, J. and Yan, H. (2021) Patients with Unilateral Retinal Vein Occlusion Show Reduced Radial Peripapillary Capillary Density in Their Fellow Eyes. BMC Ophthalmology, 21, Article No. 448. https://doi.org/10.1186/s12886-021-02192-y |
[41] |
Weinberg, D.V., Wahle, A.E., Ip, M.S., Scott, I.U., VanVeldhuisen, P.C. and Blodi, B.A. (2013) Score Study Report 12: Development of Venous Collaterals in the Score Study. Retina, 33, 287-295. https://doi.org/10.1097/IAE.0b013e318263d106 |
[42] |
Arrigo, A., Aragona, E., Lattanzio, R., Scalia, G., Bandello, F. and Parodi, M.B. (2021) Collateral Vessel Development in Central and Branch Retinal Vein Occlusions Are Associated with Worse Visual and Anatomic Outcomes. Investigative Ophthalmology & Visual Science, 62, Article 1. https://doi.org/10.1167/iovs.62.14.1 |
[43] |
Lee, H.E., Wang, Y., Fayed, A.E. and Fawzi, A.A. (2019) Exploring the Relationship between Collaterals and Vessel Density in Retinal Vein Occlusions Using Optical Coherence Tomography Angiography. PLOS ONE, 14, e0215790. https://doi.org/10.1371/journal.pone.0215790 |
[44] |
Takahashi, H., Nakagawa, K., Yamada, H., Mori, H., Oba, S., Toyama, K. and Takahashi, K. (2021) Time Course of Collateral Vessel Formation after Retinal Vein Occlusion Visualized by OCTA and Elucidation of Factors in Their Formation. Heliyon, 7, e05902. https://doi.org/10.1016/j.heliyon.2021.e05902 |