[1] |
Zheng, S., Xie, H.P. and Xiong, H.Y. (2006) Clinical Analysis of 135 Patients with Severe Eye Burn. Chinese Journal of Burns, 22, 50-52. |
[2] |
Nagano, T., Hao, J.L., Nakamura, M., et al. (2001) Stimulatory Effect of Pseudomonal Elastase on Collagen Degradation by Cultured Keratocytes. Investigative Ophthalmology & Visual Science, 42, 1247-1253. |
[3] |
Koda, A., Nagai, H., Watanabe, S., et al. (1976) Inhibition of Hypersensitivity Reactions by a New Drug, N (3’, 4’-Dimethoxycinnamoyl) Anthranilic Acid (N-5’). The Journal of Allergy and Clinical Immunology, 57, 396-407. https://doi.org/10.1016/0091-6749(76)90054-3 |
[4] |
Ayaki, M., Iwasawa, A., Yaguchi, S. and Koide, R. (2010) Preserved and Unpreserved 12 Anti-Allergic Ophthalmic Solutions and Ocular Surface Toxicity: In Vitro Assessment in Four Cultured Corneal and Conjunctival Epithelial Cell Lines. Biocontrol Science, 15, 143-148. https://doi.org/10.4265/bio.15.143 |
[5] |
Shishibori, T., Oyama, Y., Matsushita, O., et al. (1999) Three Distinct Anti-Allergic Drugs, Amlexanox, Cromolyn and Tranilast, Bind to S100A12 and S100A13 of the S100 Protein Family. Biochemical Journal, 338, 583-589. https://doi.org/10.1042/bj3380583 |
[6] |
Murphy, G., Cockett, M.I., Stephens, P.E., Smith, B.J. and Docherty, A.J.P. (1987) Stromelysin Is an Activator of Procollagenase. A Study with Natural and Recombinant Enzymes. Biochemical Journal, 248, 265-268. https://doi.org/10.1042/bj2480265 |
[7] |
Kim, H.S., Shang, T., Chen, Z., Pflugfelder, S.C. and Li, D.Q. (2004) TGF-β1 Stimulates Production of Gelatinase (MMP-9), Collagenases (MMP-1, -13) and Stromelysins (MMP-3, -10, -11) by Human Corneal Epithelial Cells. Experimental Eye Research, 79, 263-274. https://doi.org/10.1016/j.exer.2004.05.003 |
[8] |
Fini, M.E., Girard, M.T. and Matsubara, M. (1992) Collagenolytic/Gelatinolytic Enzymes in Corneal Wound Healing. Acta Ophthalmologica, 70, 26-33. https://doi.org/10.1111/j.1755-3768.1992.tb02165.x |
[9] |
Paterson, C.A., Wells, J.G., Koklitis, P.A., et al. (1994) Recombinant Tissue Inhibitor of Metalloproteinases Type 1 Suppresses Alkali-Burn-Induced Corneal Ulceration in Rabbits. Investigative Ophthalmology & Visual Science, 35, 677-684. |
[10] |
Zhang, H., Li, C. and Baciu, P.C. (2002) Expression of Integrins and MMPs during Alkaline-Burn-Induced Corneal Angiogenesis. Investigative Ophthalmology & Visual Science, 43, 955-962. |
[11] |
Shimizu, T., Kanai, K., Asano, K., Hisamitsu, T. and Suzaki, H. (2005) Suppression of Matrix Metalloproteinase Production in Nasal Fibroblasts by Tranilast, an Antiallergic Agent, in vitro. Mediators of Inflammation, 2005, Article ID: 819627. https://doi.org/10.1155/MI.2005.150 |
[12] |
Shimizu, T., Kanai, K., Kyo, Y., et al. (2006) Effect of Tranilast on Matrix Metalloproteinase Production from Neutrophils in-vitro. Journal of Pharmacy and Pharmacology, 58, 91-99. https://doi.org/10.1211/jpp.58.1.0011 |
[13] |
Liu, Y., Kan, M., Li, A., et al. (2016) Inhibitory Effects of Tranilast on Cytokine, Chemokine, Adhesion Molecule, and Matrix Metalloproteinase Expression in Human Corneal Fibroblasts Exposed to Poly (I:C). Current Eye Research, 41, 1400-1407. https://doi.org/10.3109/02713683.2015.1127389 |
[14] |
Liu, Y., Zhao, X.J., Zheng, X.S., et al. (2018) Tranilast Inhibits TGF-β-Induced Collagen Gel Contraction Mediated by Human Corneal Fibroblasts. International Journal of Ophthalmology, 11, 1247-1252. |
[15] |
Liu, Y., Xu, D., Li, J. and Liu, Y. (2014) Inhibition of Interleukin-1β-Induced Matrix Metalloproteinase Expression in Human Corneal Fibroblasts by Tranilast. Current Eye Research, 39, 885-893. https://doi.org/10.3109/02713683.2014.884598 |
[16] |
Yashiro, M., Murahashi, K., Matsuoka, T., et al. (2003) Tranilast (N-3,4-Dimethoxycinamoyl Anthranilic Acid): A Novel Inhibitor of Invasion-Stimulating Interaction between Gastric Cancer Cells and Orthotopic Fibroblasts. Anticancer Research, 23, 3899-3904. |
[17] |
Darakhshan, S., Bidmeshkipour, A., Khazaei, M., et al. (2013) Synergistic Effects of Tamoxifen and Tranilast on VEGF and MMP-9 Regulation in Cultured Human Breast Cancer Cells. Asian Pacific Journal of Cancer Prevention, 14, 6869-6874. https://doi.org/10.7314/APJCP.2013.14.11.6869 |
[18] |
Kaneda, M., Obara, H., Suzuki, K., et al. (2017) Evaluation of Suppressive Effects of Tranilast on the Invasion/Metastasis Mechanism in a Murine Pancreatic Cancer Cell Line. Pancreas, 46, 567-574. https://doi.org/10.1097/MPA.0000000000000779 |
[19] |
Pfister, R.R., Haddox, J.L., Sommers, C.I. and Lam, K.W. (1995) Identification and Synthesis of Chemotactic Tripeptides from Alkali-Degraded Whole Cornea. A Study of N-Acetyl-Proline-Glycine-Proline and N-Methyl-Proline- Glycine-Proline. Investigative Ophthalmology & Visual Science, 36, 1306-1316. |
[20] |
Pfister, R.R., Haddox, J.L., Dodson, R.W. and Harkins, L.E. (1987) Alkali-Burned Collagen Produces a Locomotory and Metabolic Stimulant to Neutrophils. Investigative Ophthalmology & Visual Science, 28, 295-304. |
[21] |
Planck, S.R., Rich, L.F., Ansel, J.C., Huang, X.N. and Rosenbaum, J.T. (1997) Trauma and Alkali Burns Induce Distinct Patterns of Cytokine Gene Expression in the Rat Cornea. Ocular Immunology and Inflammation, 5, 95-100. https://doi.org/10.3109/09273949709085057 |
[22] |
Sotozono, C., He, J., Matsumoto, Y., et al. (1997) Cytokine Expression in the Alkali-Burned Cornea. Current Eye Research, 16, 670-676. https://doi.org/10.1076/ceyr.16.7.670.5057 |
[23] |
Den, S., Sotozono, C., Kinoshita, S. and Ikeda, T. (2004) Efficacy of Early Systemic Betamethasone or Cyclosporin A after Corneal Alkali Injury via Inflammatory Cytokine Reduction. Acta Ophthalmologica Scandinavica, 82, 195-199. https://doi.org/10.1111/j.1600-0420.2004.00229.x |
[24] |
Cubitt, C.L., Tang, Q., Monteiro, C.A., et al. (1993) IL-8 Gene Expression in Cultures of Human Corneal Epithelial Cells and Keratocytes. Investigative Ophthalmology & Visual Science, 34, 3199-3206. |
[25] |
Cubitt, C.L., Lausch, R.N. and Oakes, J.E. (1995) Differences in Interleukin-6 Gene Expression between Cultured Human Corneal Epithelial Cells and Keratocytes. Investigative Ophthalmology & Visual Science, 36, 330-336. |
[26] |
Sakamoto, S., Inada, K., Chiba, K., et al. (1991) Production of IL-6 and IL-1 α by Human Corneal Epithelial Cells. Nippon Ganka Gakkai Zasshi, 95, 728-732. |
[27] |
Lu, Y., Fukuda, K., Liu, Y., Kumagai, N. and Nishida, T. (2004) Dexamethasone Inhibition of IL-1-Induced Collagen Degradation by Corneal Fibroblasts in Three-Dimensional Culture. Investigative Ophthalmology & Visual Science, 45, 2998-3004. https://doi.org/10.1167/iovs.04-0051 |
[28] |
Kumagai, N., Fukuda, K., Fujitsu, Y., et al. (2005) Lipopolysaccharide-Induced Expression of Intercellular Adhesion Molecule-1 and Chemokines in Cultured Human Corneal Fibroblasts. Investigative Ophthalmology & Visual Science, 46, 114-120. https://doi.org/10.1167/iovs.04-0922 |
[29] |
Li, D.Q., Zhou, N., Zhang, L., et al. (2010) Suppressive Effects of Azithromycin on Zymosan-Induced Production of Proinflammatory Mediators by Human Corneal Epithelial Cells. Investigative Ophthalmology & Visual Science, 51, 5623-5629. https://doi.org/10.1167/iovs.09-4992 |
[30] |
Chikaraishi, A., Hirahashi, J., Takase, O., et al. (2001) Tranilast Inhibits Interleukin-1β-Induced Monocyte Chemoattractant Protein-1 Expression in Rat Mesangial Cells. European Journal of Pharmacology, 427, 151-158. https://doi.org/10.1016/S0014-2999(01)01215-8 |
[31] |
Inoue, H., Ohshima, H., Kono, H., et al. (1997) Suppressive Effects of Tranilast on the Expression of Inducible Cyclooxygenase (COX2) in Interleukin-1β-Stimulated Fibroblasts. Biochemical Pharmacology, 53, 1941-1944. https://doi.org/10.1016/S0006-2952(97)00187-1 |
[32] |
Adachi, T., Fukuda, K., Kondo, Y. and Nishida, T. (2010) Inhibition by Tranilast of the Cytokine-Induced Expression of Chemokines and the Adhesion Molecule VCAM-1 in Human Corneal Fibroblasts. Investigative Ophthalmology & Visual Science, 51, 3954-3960. https://doi.org/10.1167/iovs.09-4161 |
[33] |
See, F., Watanabe, M., Kompa, A.R., et al. (2013) Early and Delayed Tranilast Treatment Reduces Pathological Fibrosis following Myocardial Infarction. Heart, Lung and Circulation, 22, 122-132. https://doi.org/10.1016/j.hlc.2012.08.054 |
[34] |
Pae, H.O., Jeong, S.O., Koo, B.S., et al. (2008) Tranilast, an Orally Active Anti-Allergic Drug, Up-Regulates the Anti-Inflammatory Heme Oxygenase-1 Expression But Down-Regulates the Pro-Inflammatory Cyclooxygenase-2 and Inducible Nitric Oxide Synthase Expression in RAW264.7 Macrophages. Biochemical and Biophysical Research Communications, 371, 361-365. https://doi.org/10.1016/j.bbrc.2008.04.054 |
[35] |
Morita, H., Kihara, T., Miyamoto, M., Yamagata, M. and Sagami, S. (1990) Interleukin-2 Production of T Cells in Atopic Dermatitis. The Journal of Dermatology, 17, 375-379. https://doi.org/10.1111/j.1346-8138.1990.tb01659.x |
[36] |
Abdelaziz, R.R., Elkashef, W.F. and Said, E. (2015) Tranilast Reduces Serum IL-6 and IL-13 and Protects against Thioacetamide-Induced Acute Liver Injury and Hepatic Encephalopathy. Environmental Toxicology and Pharmacology, 40, 259-267. https://doi.org/10.1016/j.etap.2015.06.019 |
[37] |
Cui, P., Tang, Z., Zhan, Q., et al. (2022) In vitro and vivo Study of Tranilast Protects from Acute Respiratory Distress Syndrome and Early Pulmonary Fibrosis Induced by Smoke Inhalation. Burns, 48, 880-895. https://doi.org/10.1016/j.burns.2022.03.010 |
[38] |
Zhuang, T., Li, S., Yi, X., et al. (2020) Tranilast Directly Targets NLRP3 to Protect Melanocytes from Keratinocyte-Derived IL-1β under Oxidative Stress. Frontiers in Cell and Developmental Biology, 8, Article 588. https://doi.org/10.3389/fcell.2020.00588 |
[39] |
Chu, H.Q., Li, J., Huang, H.P., et al. (2016) Protective Effects of Tranilast on Oxazolone-Induced Rat Colitis through a Mast Cell-Dependent Pathway. Digestive and Liver Disease, 48, 162-171. https://doi.org/10.1016/j.dld.2015.09.002 |
[40] |
Inglis, J.J., Criado, G., Andrew, M., Williams, R.O. and Selley, M.L. (2007) The Anti-Allergic Drug, N-(3’, 4’-Dimethoxycinnamonyl) Anthranilic Acid, Exhibits Potent Anti-Inflammatory and Analgesic Properties in Arthritis. Rheumatology, 46, 1428-1432. https://doi.org/10.1093/rheumatology/kem160 |
[41] |
Sun, Q.F., Ding, J.G., Sheng, J.F., et al. (2011) Novel Action of 3,4-DAA Ameliorating Acute Liver Allograft Injury. Cell Biochemistry and Function, 29, 673-678. https://doi.org/10.1002/cbf.1805 |