学术期刊
切换导航
首 页
文 章
beplay手机端
投 稿
预 印
会 议
beplay电子竞技项目
新 闻
合 作
我 们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
核心OA期刊
Core OA Journal
数学与物理
Math & Physics
化学与材料
Chemistry & Materials
生命科学
Life Sciences
医药卫生
Medicine & Health
beplay888备用网址
工程技术
Engineering & Technology
地球与环境
Earth & Environment
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
合作期刊
Cooperation Journals
首页
数学与物理
应用数学进展
Vol. 12 No. 8 (August 2023)
期刊菜单
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
带有合作捕猎Holling III型的捕食者-食饵模型
A Predator-Prey Model of Collaborative Hunting with Holling III Type
DOI:
10.12677/AAM.2023.128366
,
PDF
,
,
,
被引量
作者:
闻韬
:杭州师范大学数学学院,浙江 杭州
关键词:
合作捕猎
;
Allee效应
;
Hopf分支
;
捕食者-食饵模型
;
鞍结分支
;
余维二极限环的尖点
;
Cooperative Hunting
;
Allee Effect
;
Hopf Bifurcation
;
Predator-Prey Model
;
Saddle-Node Bifurcation
;
Codimension-2 Cusp of Limit Cycle
摘要:
本文研究了带有强弱Allee效应,合作捕猎和反捕食行为的捕食者-食饵模型的动力学行为。我们进 行了详细的平衡点存在性和稳定性分析, 分析了鞍结分支,Hopf分支和余维二极限环的尖点,并通过数值模拟来验证理论结果,得到极限环的余维二尖点的存在性,进而得到系统至少存在三个 共存的极限环,表明在合作捕猎的影响下,具有Allee效应和反捕食行为的捕食者-食饵模型的动力学行为会更加复杂。
Abstract:
This paper investigates the dynamic behavior of a predator-prey model with strong and weak Allee effects, cooperative hunting, and anti-predator behavior. We discuss the existence and stability of the equilibrium points, and we perform a detailed bifurcation analysis including the saddle-node bifurcation, Hopf bifurcation and codimension-2 cusp of limit cycle, then we verified the theoretical results through numerical simula- tion, obtained the existence of the codimension- 2 cusp of the Limit cycle, and then obtained that the system has at least three coexisting Limit cycles, indicating that under the influence of cooperative hunting, the dynamic behavior of the predator-prey model with Allee effect and anti-predator behavior will be more complex.
文章引用:
闻韬. 带有合作捕猎Holling III型的捕食者-食饵模型[J]. 应用数学进展, 2023, 12(8): 3709-3727.
https://doi.org/10.12677/AAM.2023.128366
参考文献
[1]
Yao, Y., Song, T. and Li, Z. (2022) Bifurcations of a Predator-Prey System with Cooperative Hunting and Holling III Functional Response. Nonlinear Dynamics, 110, 915-932.
https://doi.org/10.1007/s11071-022-07653-7
[2]
Alves, M.T. and Hilker, F.M. (2017) Hunting Cooperation and Allee Effects in Predators. Journal of Theoretical Biology, 419, 13-22.
https://doi.org/10.1016/j.jtbi.2017.02.002
[3]
Berec, L. (2010) Impacts of Foraging Facilitation among Predators on Predator-Prey Dynam- ics. Bulletin of Mathematical Biology, 72, 94-121.
https://doi.org/10.1007/s11538-009-9439-1
[4]
Perko, L. (2001) Differential Equations and Dynamical Systems. Springer, Berlin.
https://doi.org/10.1007/978-1-4613-0003-8
[5]
Huang, J., Gong, Y. and Ruan, S. (2013) Bifurcation Analysis in a Predator-Prey Model with Constant-Yield Predator Harvesting. Discrete and Continuous Dynamical Systems-B, 18, 2101-2121.
https://doi.org/10.3934/dcdsb.2013.18.2101
[6]
Shan, C. and Zhu, H. (2014) Bifurcations and Complex Dynamics of an SIR Model with the Impact of the Number of Hospital Beds. Journal of Differential Equations, 257, 1662-1688.
https://doi.org/10.1016/j.jde.2014.05.030
[7]
Doedel, E.J., Champneys, A.R., Dercole, F., Fairgrieve, T.F., Kuznetsov, Y.A., Oldeman, B., Paffenroth, R., Sandstede, B., Wang, X. and Zhang, C. (2007) Auto-07p: Continuation and Bifurcation Software for Ordinary Differential Equations.
https://xueshu.baidu.com/usercenter/paper/show?paperid=3dfceed0faf42fa33cd5cec3c728e459&site= xueshu se
投稿
为你推荐
友情链接
科研出版社
开放图书馆
map