[1] |
Rothaus, O. (1976) On Bent Functions. Journal of Combinatorial Theory, Series A, 20, 300- 305. https://doi.org/10.1016/0097-3165(76)90024-8 |
[2] |
Ding, C., Helleseth, T., Klove, T. and Wang, X. (2007) A Generic Construction of Cartesian Authentication Codes. IEEE Transactions on Information Theory, 53, 2229-2235. https://doi.org/10.1109/TIT.2007.896872 |
[3] |
Delsarte, P. (1973) Four Fundamental Parameters of a Code and Their Combinatorial Signifi- cance. Information and Control, 23, 407-438. https://doi.org/10.1016/S0019-9958(73)80007-5 |
[4] |
Ding, C. and Wang, X. (2005) A Coding Theory Construction of New Systematic Authenti- cation Codes. Theoretical Computer Science, 330, 81-99. https://doi.org/10.1016/j.tcs.2004.09.011 |
[5] |
Yuan, J. and Ding, C. (2006) Secret Sharing Schemes from Three Classes of Linear Codes. IEEE Transactions on Information Theory, 52, 206-212. https://doi.org/10.1109/TIT.2005.860412 |
[6] |
Ashikhmin, A. and Barg, A. (1998) Minimal Vectors in Linear Codes. IEEE Transactions on Information Theory, 44, 2010-2017. https://doi.org/10.1109/18.705584 |
[7] |
Ding, C. (2015) Linear Codes from Some 2-Designs. IEEE Transactions on Information Theory, 61, 3265-3275. https://doi.org/10.1109/TIT.2015.2420118 |
[8] |
Ding, C. (2016) A Construction of Binary Linear Codes from Boolean Functions. Discrete Mathematics, 339, 2288-2303. https://doi.org/10.1016/j.disc.2016.03.029 |
[9] |
Ding, C., Heng, Z. and Zhou, Z. (2018) Minimal Binary Linear Codes. IEEE Transactions on Information Theory, 64, 6536-6545. https://doi.org/10.1109/TIT.2018.2819196 |
[10] |
Heng, Z., Ding, C. and Zhou, Z. (2018) Minimal Linear Codes over Finite Fields. Finite Fields and Their Applications, 54, 176-196. https://doi.org/10.1016/j.ffa.2018.08.010 |
[11] |
Zhang, W., Yan, H. and Wei, H. (2019) Four Families of Minimal Binary Linear Codes with wmin/wmax ≤ 1/2. Applicable Algebra in Engineering, Communication and Computing, 30, 175-184. https://doi.org/10.1007/s00200-018-0367-x |
[12] |
Mesnager, S. (2014) Several New Infinite Families of Bent Functions and Their Duals. IEEE Transactions on Information Theory, 60, 4397-4407. https://doi.org/10.1109/TIT.2014.2320974 |
[13] |
Ding, C., Heng, Z. and Zhou, Z. (2018) Minimal Binary Linear Codes. IEEE Transactions on Information Theory, 64, 6536-6545. https://doi.org/10.1109/TIT.2018.2819196 |