[1] |
Van Damme, J. and Du Prez, F. (2018) Anthracene-Containing Polymers toward High-End Applications. Progress in Polymer Science, 82, 92-119. https://doi.org/10.1016/j.progpolymsci.2018.02.002 |
[2] |
Senseman, C.E. and Nelson, O.A. (1923) Catalytic Oxidation of Anthracene to Anthraquinone. Industrial & Engineering Chemistry, 15, 521-524. https://doi.org/10.1021/ie50161a040 |
[3] |
Pinilla, J.L., García, A.B., Philippot, K., Lara, P., García-Suárez, E.J. and Millan, M. (2014) Carbon-Supported Pd Nanoparticles as Catalysts for Anthracene Hydrogenation. Fuel, 116, 729-735. https://doi.org/10.1016/j.fuel.2013.08.067 |
[4] |
Figueira-Duarte, T.M. and Müllen, K. (2011) Pyrene-Based Materials for Organic Electronics. Chemical Reviews, 111, 7260-7314. https://doi.org/10.1021/cr100428a |
[5] |
Qiu, F., Dong, Y., Liu, J., Sun, Y., Geng, H., Zhang, H., Zhu, D., Shi, X., Liu, J., Zhang, J., Ai, S. and Jiang, L. (2020) Asymmetric Organic Semiconductors for High Performance Single Crystalline Field-Effect Transistors with Low Activation Energy. Journal of Materials Chemistry C, 8, 6006-6012. https://doi.org/10.1039/D0TC01122C |
[6] |
Valentini, L., Bagnis, D., Marrocchi, A., Seri, M., Taticchi, A. and Kenny, J.M. (2008) Novel Anthracene-Core Molecule for the Development of Efficient PCBM-Based Solar Cells. Chemistry of Materials, 20, 32-34. https://doi.org/10.1021/cm703011k |
[7] |
Wright, G.T. (1955) Absolute Scintillation Efficiency of Anthracene Crystals. Proceedings of the Physical Society: Section B, 68, Article 929. https://doi.org/10.1088/0370-1301/68/11/317 |
[8] |
Nguyen, T.V.T. and Seo, Y.J. (2017) Highly Sensitive Fluorescent Sensor Targeting CuCl2 Based on Thiophene Attached Anthracene Compound (TA). Tetrahedron Letters, 58, 941-944. https://doi.org/10.1016/j.tetlet.2017.01.071 |
[9] |
Szemenyei, B., Móczár, I., Pál, D., Kocsis, I., Baranyai, P. and Huszthy, P. (2016) Synthesis and Enantiomeric Recognition Studies of Optically Active Pyridino-Crown Ethers Containing an Anthracene Fluorophore Unit. Chirality, 28, 562-568. https://doi.org/10.1002/chir.22614 |
[10] |
Huang, Q., Lu, G., Shen, H.M., Chung, M.C.M. and Ong, C.N. (2007) Anti-Cancer Properties of Anthraquinones from Rhubarb. Medicinal Research Reviews, 27, 609-630. https://doi.org/10.1002/med.20094 |
[11] |
Shrestha, J.P., Fosso, M.Y., Bearss, J. and Chang, C.W.T. (2014) Synthesis and Anticancer Structure Activity Relationship Investigation of Cationic Anthraquinone Analogs. European Journal of Medicinal Chemistry, 77, 96-102. https://doi.org/10.1016/j.ejmech.2014.02.060 |
[12] |
Bonadonna, G., Monfardini, S., de Lena, M. and Fossati-Bellani, F. (1969) Clinical Evaluation of Adriamycin, a New Antitumour Antibiotic. The BMJ, 3, 503-506. https://doi.org/10.1136/bmj.3.5669.503 |
[13] |
Van Gorkom, B.A.P., De Vries, E.G.E., and Kleibeuker, K. (1999) Review Article: Anthranoid Laxatives and Their Potential Carcinogenic Effects. Alimentary Pharmacology & Therapeutics, 13, 443-452. https://doi.org/10.1046/j.1365-2036.1999.00468.x |
[14] |
Schön, J.H., Kloc, C. and Batlogg, B. (2000) RETRACTED ARTICLE: Superconductivity in Molecular Crystals Induced by Charge Injection. Nature, 406, 702-704. https://doi.org/10.1038/35021011 |
[15] |
Phan, Q.T.N., Heguri, S., Tanabe, Y., Shimotani, H., Nakano, T., Nozue, Y. and Tanigaki, K. (2014) Tuning of the Ground State in Electron Doped Anthracene. Dalton Transactions, 43, 10040-10045. https://doi.org/10.1039/c4dt00071d |
[16] |
Hillesheim, D., Gofryk, K. and Sefat, A.S. (2015) On the Nature of Filamentary Superconductivity in Metal-Doped Hydrocarbon Organic Materials. Novel Superconducting Materials, 1, 12-14. https://doi.org/10.1515/nsm-2015-0001 |
[17] |
Wang, X.F., Liu, R.H., Gui, Z., Xie, Y.L., Yan, Y.J., Ying, J.J., Luo, X.G. and Chen, X.H. (2011) Superconductivity at 5 K in Alkali-Metal-Doped Phenanthrene. Nature Communications, 2, Article No. 507. https://doi.org/10.1038/ncomms1513 |
[18] |
Takabayashi, Y., Menelaou, M., Tamura, H., Takemori, N., Koretsune, T., Štefančič, A., Klupp, G., Buurma, A.J.C., Nomura, Y., Arita, R., Arčon, D., Rosseinsky, M.J. and Prassides, K. (2017) π-electron S = ½ Quantum Spin-Liquid State in an Ionic Polyaromatic Hydrocarbon. Nature Chemistry, 9, 635-643. https://doi.org/10.1038/nchem.2764 |
[19] |
付明安, 王仁树, 钟国华, 张杰, 张培源, 陈晓嘉, 高云, 黄忠兵. 钾掺杂9-甲基蒽的晶体结构和磁性研究[J]. 凝聚态物理学进展, 2019, 8(4): 77-85.http://dx.doi.org/10.12677/CMP.2019.84010 |
[20] |
Fu, M.A., Wang, R.S., Yang, H., Zhang, P.Y., Zhang, C.F., Chen, X.J., Gao, Y. and Huang, Z.B. (2021) π-Electron Weak Ferro-magnetism in Potassium-Intercalated 9-Phenylanthracene. Carbon, 173, 587-593. https://doi.org/10.1016/j.carbon.2020.11.064 |
[21] |
Benitez, M.J., Petracic, O., Salabas, E.L., Radu, F., Tüysüz, H., Schüth, F. and Zabel, H. (2008) Evidence for Core-Shell Magnetic Behavior in Antiferromagnetic Co3O4 Nanowires. Physical Review Letters, 101, Article ID: 097206. https://doi.org/10.1103/PhysRevLett.101.097206 |
[22] |
Wojciechowska, A., Janczak, J., Zierkiewicz, W., Rytlewski, P., Rojek, T. and Duczmal, M. (2019) Copper (II) Complex with L-Arginine—Crystal Structure, DFT Calculations, Spectroscopic, Thermal and Magnetic Properties. Materials Chemistry and Physics, 228, 272-284. https://doi.org/10.1016/j.matchemphys.2019.02.037 |
[23] |
Han, T., Shi, W., Niu, Z., Na, B. and Cheng, P. (2013) Magnetic Blocking from Exchange Interactions: Slow Relaxation of the Magnetization and Hysteresis Loop Observed in a Dysprosi-um—Nitronyl Nitroxide Chain Compound with an Antiferromagnetic Ground State. Chemistry—A European Journal, 19, 994-1001. https://doi.org/10.1002/chem.201202708 |
[24] |
Rahaman, B., Kar, S., Vasiliev, A. and Saha-Dasgupta, T. (2018) Interplay of Alternation and Further Neighbor Interaction in S = 1/2 Spin Chains: A Case Study of Cs2CuAl4O8. Physical Review B, 98, Article ID: 144412. https://doi.org/10.1103/PhysRevB.98.144412 |
[25] |
Hosokoshi, Y., Tamura, M., Sawa, H., Kato, R. and Kinoshita, M. (1995) Two-Dimensional Ferromagnetic Intermolecular Interactions in Crystals of the p-Cyanophenyl Nitronyl Nitroxide Radical. Journal of Materials Chemistry, 5, 41-46. https://doi.org/10.1039/jm9950500041 |
[26] |
Baldamus, J., Berghof, C., Cole, M.L., Evans, D.J., Hey-Hawkins, E. and Junk, P.C. (2002) N,N’-Di (Tolyl) Formamidinate Complexes of Potassium: Studies of Ancillary Donor Imposed Molecular and Supramolecular Structure. Journal of the Chemical Society, Dalton Transactions, No. 2, 4185-4192. https://doi.org/10.1039/B206165A |
[27] |
Choudhary, R., Skomski, R. and Kashyap, A. (2017) Elec-tric-Field-Controlled Interface Exchange Coupling in Cobalt—Chromia Thin Films. IEEE Transactions on Magnetics, 53, 1-4. https://doi.org/10.1109/TMAG.2017.2730178 |
[28] |
Łapiński, A., Spanget-Larsen, J., Langgård, M., Waluk, J. and Radziszewski, J.G. (2001) Raman Spectrum of the Phenyl Radical. The Journal of Physical Chemistry A, 105, 10520-10524. https://doi.org/10.1021/jp0114900 |
[29] |
Xie, Y., Wang, X., Han, X., Xue, X., Ji, W., Qi, Z., Liu, J., Zhao, B. and Ozaki, Y. (2010) Sensing of Polycyclic Aromatic Hydrocarbons with Cyclodextrin Inclusion Complexes on Silver Nanoparticles by Sur-face-Enhanced Raman Scattering. Analyst, 135, 1389-1394. https://doi.org/10.1039/c0an00076k |