[1] |
Hamsic, N., Schmelter, A., Mohd, A., et al. (2007) Increasing Renewable Energy penEtration in Isolated Grids Using a Flywheel Energy Storage System. Proceedings of the 2007 International Conference on Power Engineering, Energy and Electrical Drives, Setubal, 12-14 April 2007, 195-200. https://doi.org/10.1109/POWERENG.2007.4380112 |
[2] |
Gabbar, H.A., Abdussami, M.R. and Adham, M.I. (2020) Techno-Economic Evaluation of Interconnected Nuclear-Renewable Micro Hybrid Energy Systems with Com-bined Heat and Power. Energies, 13, Article 1642. https://doi.org/10.3390/en13071642 |
[3] |
张平, 徐景明, 石磊, 等. 中国高温气冷堆制氢发展战略研究[J]. 中国工程科学, 2019, 21(1): 20-28. |
[4] |
张平, 于波, 徐景明. 核能制氢技术的发展[J]. 核化学与放射化学, 2011, 33(4): 193-203. |
[5] |
Al-Othman, A., Darwish, N.N., Qasim, M., et al. (2019) Nuclear Desalination: A State-of-the-Art Review. Desalination, 457, 39-61. https://doi.org/10.1016/j.desal.2019.01.002 |
[6] |
Misra, B. (2007) Seawater Desalination Using Nuclear Heat/Electricity—Prospects and Challenges. Desalination, 205, 269-278. https://doi.org/10.1016/j.desal.2006.03.555 |
[7] |
Peakman, A. and Merk, B. (2019) The Role of Nuclear Power in Meeting Current and Future Industrial Process Heat Demands. Energies, 12, Article 3664. https://doi.org/10.3390/en12193664 |
[8] |
曾斌, 李言瑞, 屈凡玉, 等. 核能供热发展模式研究[J]. 能源, 2022(3): 68-71. |
[9] |
International Atomic Energy Agency (2007) Non-Electric Applications of Nuclear Power: Sea-water Desalination, Hydrogen Production and Other Industrial Applications. Proceedings of an International Conference 2007, Oarai, 16-19 April 2007, 4-8. |
[10] |
Abu-Khader, M.M. (2009) Recent Advances in Nuclear Power: A Review. Progress in Nuclear Energy, 51, 225-235. https://doi.org/10.1016/j.pnucene.2008.05.001 |
[11] |
Hong, S., Bradshaw, C.J. and Brook, B.W. (2015) Global Ze-ro-Carbon Energy Pathways Using Viable Mixes of Nuclear and Renewables. Applied Energy, 143, 451-459. https://doi.org/10.1016/j.apenergy.2015.01.006 |
[12] |
Suman, S. (2018) Hybrid Nuclear-Renewable Energy Systems: A Review. Journal of Cleaner Production, 181, 166-177. https://doi.org/10.1016/j.jclepro.2018.01.262 |
[13] |
Karakosta, C., Pappas, C., Marinakis, V. and Psarras, J. (2013) Renewable Energy and Nuclear Power towards Sustainable Development: Characteristics and prospects. Renewable and Sustainable Energy Reviews, 22, 187-197. https://doi.org/10.1016/j.rser.2013.01.035 |
[14] |
Chen, J., Garcia, H.E., Kim, J.S., et al. (2016) Operations Optimi-zation of Nuclear Hybrid Energy Systems. Nuclear Technology, 195, 143-156. https://doi.org/10.13182/NT15-130 |
[15] |
Fathi, N., Mcdaniel, P., Aleyasin, S.S., et al. (2018) Efficiency Enhance-ment of Solar Chimney Power Plant by Use of Waste Heat from Nuclear Power Plant. Journal of Cleaner Production, 180, 407-416. https://doi.org/10.1016/j.jclepro.2018.01.132 |
[16] |
Wang, G., Yin, J., Lin, J., Chen, Z. And Hu, P. (2021) Design and Economic Analysis of a Novel Hybrid Nuclear-Solar Complementary Power System for Power Generation and De-salination. Applied Thermal Engineering, 187, Article ID: 116564. https://doi.org/10.1016/j.applthermaleng.2021.116564 |
[17] |
Zhao, B., Cheng, M., Liu, C. and Dai, Z. (2018) Con-ceptual Design and Preliminary Performance Analysis of a Hybrid Nuclear-Solar Power System with Molten-Salt Packed-Bed Thermal Energy Storage for On-Demand Power Supply. Energy Conversion and Management, 166, 174-186. https://doi.org/10.1016/j.enconman.2018.04.015 |
[18] |
Garcia, H.E., Chen, J., Kim, J.S., et al. (2016) Dy-namic Performance Analysis of Two Regional Nuclear Hybrid Energy Systems. Energy Conversion and Management, 107, 234-258. https://doi.org/10.1016/j.energy.2016.03.128 |
[19] |
金龙华. 海阳核电“核能+光伏”工程将正式投运! [EB/OL].http://www.nengyuancn.com/newenergy/124696.html, 2022-04-12. |
[20] |
杨晓冉. 海阳核电“核能 + 光伏”工程正式投运[EB/OL].http://www.cnenergynews.cn/dianli/2022/04/21/detail_20220421122133.html, 2022-04-21. |
[21] |
迟永宁, 刘燕华, 王伟胜, 等. 风电接入对电力系统的影响[J]. 电网技术, 2007, 31(3): 77-81. |
[22] |
Curtis, D.J. and Forsberg, C.W. (2016) A Nuclear Renewable Oil Shale System for Economic Dispatchable Low-Carbon Electricity and Liquid Fuels. Nuclear Technology, 195, 335-352. https://doi.org/10.13182/NT16-14 |
[23] |
Papaioannou, I.T., Purvins, A., Shropshire, D., et al. (2014) Role of a Hybrid Energy System Comprising a Small/Medium-Sized Nuclear Reactor and a Biomass Processing Plant in a Scenario with a High Deployment of Onshore Wind Farms. Journal of Energy Engineer-ing, 140, Article ID: 04013005. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000142 |
[24] |
顾忠茂. 氢能利用与核能制氢研究开发综述[J]. 原子能科学技术, 2006, 40(1): 30-35. |
[25] |
Pinsky, R., Sabharwall, P., Hartvigsen, J. and O’Brien, J. (2020) Compara-tive Review of Hydrogen Production Technologies for Nuclear Hybrid Energy Systems. Progress in Nuclear Energy, 123, Article ID: 103317. https://doi.org/10.1016/j.pnucene.2020.103317 |
[26] |
Ho, A., Mohammadi, K., Memmott, M., et al. (2021) Dynamic Simulation of a Novel Nuclear Hybrid Energy System with Large-Scale Hydrogen Storage in an Underground Salt Cav-ern. International Journal of Hydrogen Energy, 46, 31143-31157. https://doi.org/10.1016/j.ijhydene.2021.07.027 |
[27] |
Hine, G. (2016) System and Method for Power Generation Using a Hybrid Geothermal Power Plant Including a Nuclear Plant. US Patent No. 9303629 B2. |
[28] |
Lee, Y.H., Forsberg, C., Driscoll, M., et al. (2010) Options for Nuclear-Geothermal Gigawatt-Year Peak Electricity Storage Sys-tems. Proceedings of International Congress on Advances in Nuclear Power Plants 2010 (ICAPP 2010), San Diego, 13-17 June 2010, 2175-2184. |
[29] |
Denholm, P., King, J.C., Kutcher, C.F. and Wilson, P.P.H. (2012) Decarbonizing the Electric Sector: Combining Renewable and Nuclear Energy Using Thermal Storage. Energy Policy, 44, 301-311. https://doi.org/10.1016/j.enpol.2012.01.055 |
[30] |
Forsberg, C., Brick, S. and Haratyk, G. (2018) Coupling Heat Storage to Nuclear Reactors for Variable Electricity Output with Baseload Reactor Operation. The Electricity Journal, 31, 23-31. https://doi.org/10.1016/j.tej.2018.03.008 |
[31] |
杨经纬, 张宁, 王毅, 等. 面向可再生能源消纳的多能源系统: 述评与展望[J]. 2018, 42(4): 11-24. |
[32] |
Pacheco, J.E., Showalter, S.K. and Kolb, W.J. (2001) Development of a Molten-Salt Thermocline Thermal Storage System for Parabolic trough Plants. Paper No: SED2001-158, 453-460. https://doi.org/10.1115/SED2001-158 |
[33] |
Hoffmann, J.-F., Fasquelle, T., Goetz, V., et al. (2017) Experimental and Numerical Investigation of a Thermocline Thermal Energy Storage Tank. Applied Thermal Engineering, 114, 896-904. https://doi.org/10.1016/j.applthermaleng.2016.12.053 |
[34] |
Roper, R., Harkema, M., Sabharwall, P., et al. (2022) Molten Salt for Advanced Energy Applications: A Review. Annals of Nuclear Energy, 169, Article ID: 108924. https://doi.org/10.1016/j.anucene.2021.108924 |
[35] |
Terrapower (2023) Natrium.https://www.terrapower.com/our-work/natriumpower/ |
[36] |
Forsberg, C.W. (2012) Gigawatt-Year Geothermal Energy Storage Coupled to Nuclear Reactors and Large Concentrated Solar Thermal Systems. Proceedings of the Thirty-Seventh Workshop on Geothermal Reservoir Engineering, Stanford, 30 January-1 February 2012, SGP-TR-194. |
[37] |
Forsberg, C.W. (2013) Hybrid Systems to address Seasonal Mismatches between Electricity Production and Demand in Nuclear Renewable Electrical Grids. Energy Policy, 62, 333-341. https://doi.org/10.1016/j.enpol.2013.07.057 |
[38] |
Chen, Q., Lv, M., Gu, Y., et al. (2018) Hybrid Energy System for a Coal-Based Chemical Industry. Joule, 2, 607-620. https://doi.org/10.1016/j.joule.2018.02.015 |
[39] |
Buchheit, K.L., Smith, J.D., Guntupalli, U., et al. (2016) Tech-no-Economic Analysis of a Sustainable Coal, Wind and Nuclear Hybrid Energy System. Energy & Fuels, 30, 10721-10729. https://doi.org/10.1021/acs.energyfuels.6b02113 |
[40] |
Graves, C., Ebbesen, S.D., Mogensen, M. and Lackner, K.S. (2011) Sustainable Hydrocarbon Fuels by Recycling CO2 and H2O with Renewable or Nuclear Energy. Renewable and Sustainable Energy Reviews, 15, 1-23. https://doi.org/10.1016/j.rser.2010.07.014 |
[41] |
核能与可再生能源结合探索[EB/OL].https://power.in-en.com/html/power-2385536.shtml, 2021-03-24. |
[42] |
Chen, Q., Tang, Z., Lei, Y., et al. (2015) Feasi-bility Analysis of Nuclear-Coal Hybrid Energy Systems from the Perspective of Low-Carbon Development. Applied En-ergy, 158, 619-630. https://doi.org/10.1016/j.apenergy.2015.08.068 |
[43] |
Rubin, E.S., Mantripragada, H., Marks, A., et al. (2012) The Outlook for Improved Carbon Capture Technology. Progress in Energy and Combustion Science, 38, 630-671. https://doi.org/10.1016/j.pecs.2012.03.003 |
[44] |
王建强, 戴志敏, 徐洪杰. 核能综合利用研究现状与展望[J]. 中国科学院院刊, 2019, 34(4): 460-468. |
[45] |
Mahmoudi, S.M., Maleki, A. and Ochbelagh, D.R. (2022) A Novel Method Based on Fuzzy Logic to Evaluate the Storage and Backup Systems in Determining the Optimal Size of a Hybrid Renewable Energy System. Journal of Energy Storage, 49, Article ID: 104015. https://doi.org/10.1016/j.est.2022.104015 |
[46] |
Guo, Y., Jia, G., Lu, H., et al. (2022) A Methodology for Deter-mining the Proportion of Nuclear Energy in a Nuclear-Renewable Hybrid Energy System.https://ssrn.com/abstract=4028646 |
[47] |
Ruth, M.F. (2021) Opportunities and Challenges for Nuclear-Renewable Hy-brid Energy Systems. Joint Institute for Strategic Energy Analysis (JISEA)https://www.osti.gov/biblio/1826532 |
[48] |
Redfoot, E.K., Verner, K.M. and Borrelli, R.A. (2022) Applying Analytic Hierarchy Process to Industrial Process Design in a Nuclear Renewable Hybrid Energy System. Progress in Nuclear Energy, 145, Article ID: 104083. https://doi.org/10.1016/j.pnucene.2021.104083 |