[1] |
Giguère, V. (1999) Orphan Nuclear Receptors: From Gene to Function. Endocrine Reviews, 20, 689-725. https://doi.org/10.1210/er.20.5.689 |
[2] |
Winoto, A. and Littman, D.R. (2002) Nuclear Hormone Receptors in T Lymphocytes. Cell, 109, S57-S66. https://doi.org/10.1016/S0092-8674(02)00710-9 |
[3] |
张文歆, 等. 孤核受体Nur77在肿瘤治疗中的研究进展[J]. 上海医药, 2021, 42(23): 3-7. |
[4] |
Crean, D. and Murphy, E.P. (2021) Targeting NR4A Nuclear Receptors to Control Stromal Cell Inflammation, Metabolism, Angiogenesis, and Tumorigenesis. Frontiers in Cell and Developmental Biology, 9, Article ID: 589770. https://doi.org/10.3389/fcell.2021.589770 |
[5] |
Zhan, Y., Du, X., Chen, H., et al. (2008) Cytosporone B Is an Ag-onist for Nuclear Orphan Receptor Nur77. Nature Chemical Biology, 4, 548-556. https://doi.org/10.1038/nchembio.106 |
[6] |
Geng, N., Chen, T., Chen, L., et al. (2022) Nuclear Receptor Nur77 Protects against Oxidative Stress by Maintaining Mitochondrial Homeostasis via Regulating Mitochondrial Fission and Mitophagy in Smooth Muscle Cell. The Journal of Molecular and Cellular Cardiology, 170, 22-33. https://doi.org/10.1016/j.yjmcc.2022.05.007 |
[7] |
Qin, J., Chen, X., Liu, W., et al. (2022) Discovery of 5-((4-(pyridin-3-yl)pyrimidin-2-yl)amino)-1H-indole-2-carboxamide Derivatives as Novel Anti-Cancer Agents Targeting Nur77. European Journal of Medicinal Chemistry, 244, Article ID: 114849. https://doi.org/10.1016/j.ejmech.2022.114849 |
[8] |
Payapilly, A., Guilbert, R., Descamps, T., et al. (2021) TIAM1-RAC1 Promote Small-Cell Lung Cancer Cell Survival through Antagonizing Nur77-Induced BCL2 Conforma-tional Change. Cell Reports, 37, Article ID: 109979. https://doi.org/10.1016/j.celrep.2021.109979 |
[9] |
Qin, H., Gao, F., Wang, Y., et al. (2019) Nur77 Promotes Ciga-rette Smoke-Induced Autophagic Cell Death by Increasing the Dissociation of Bcl2 from Beclin-1. International Journal of Molecular Medicine, 44, 25-36. https://doi.org/10.3892/ijmm.2019.4184 |
[10] |
Liebmann, M., Hucke, S., Koch, K., et al. (2018) Nur77 Serves as a Molecular Brake of the Metabolic Switch during T Cell Activation to Restrict Autoimmunity. Proceedings of the Na-tional Academy of Sciences of the United States of America, 115, E8017-E8026. https://doi.org/10.1073/pnas.1721049115 |
[11] |
Sekiya, T., Kasahara, H., Takemura, R., et al. (2022) Essential Roles of the Transcription Factor NR4A1 in Regulatory T Cell Differentiation under the Influence of Immunosuppressants. The Journal of Immunology, 208, 2122-2130. https://doi.org/10.4049/jimmunol.2100808 |
[12] |
Kumar, A., Hill, T., Gordy, L., et al. (2020) Nur77 Controls Tol-erance Induction, Terminal Differentiation, and Effector Functions in Semi-Invariant Natural Killer T Cells. Proceedings of the National Academy of Sciences of the United States of America, 117, 17156-17165. https://doi.org/10.1073/pnas.2001665117 |
[13] |
Brunet, A., LeBel, M., Egarnes, B., et al. (2016) NR4A1-Dependent Ly6C(low) Monocytes Contribute to Reducing Joint Inflammation in Arthritic Mice through Treg Cells. European Jour-nal of Immunology, 46, 2789-2800. https://doi.org/10.1002/eji.201646406 |
[14] |
Tan, C., Mueller, J., Noviski, M., et al. (2019) Nur77 Links Chronic Antigen Stimulation to B Cell Tolerance by Restricting the Survival of Self-Reactive B Cells in the Periphery. The Jour-nal of Immunology, 202, 2907-2923. https://doi.org/10.4049/jimmunol.1801565 |
[15] |
Ipseiz, N., Uderhardt, S., Scholtysek, C., et al. (2014) The Nuclear Receptor Nr4a1 Mediates Anti-Inflammatory Effects of Apoptotic Cells. The Journal of Immunology, 192, 4852-4858. https://doi.org/10.4049/jimmunol.1303377 |
[16] |
Li, X., Liu, X., Xu, Q.M., et al. (2015) Nur77 Deficiency Leads to Systemic Inflammation in Elderly Mice. Journal of Inflammation (London), 12, Article No. 40. https://doi.org/10.1186/s12950-015-0085-0 |
[17] |
Tel-Karthaus., Kers-Rebel, E., Looman, M., et al. (2018) Nuclear Receptor Nur77 Deficiency Alters Dendritic Cell Function. Frontiers in Immunology, 9, Article No. 1797. https://doi.org/10.3389/fimmu.2018.01797 |
[18] |
Zhang, Y.-J., Song, J.-R. and Zhao, M.-J. (2019) NR4A1 Regu-lates Cerebral Ischemia-Induced Brain Injury by Regulating Neuroinflammation through Interaction with NF-κB/p65. Bi-ochemical and Biophysical Research Communications, 518, 59-65. https://doi.org/10.1016/j.bbrc.2019.08.008 |
[19] |
Koenis, D.S., Medzikovic, L., Loenen, P.S., et al. (2018) Nuclear Receptor Nur77 Limits the Macrophage Inflammatory Response through Transcriptional Reprogramming of Mitochon-drial Metabolism. Cell Reports, 24, 2127-2140.e2127. https://doi.org/10.1016/j.celrep.2018.07.065 |
[20] |
Li, L., Liu, Y., Chen, H., et al. (2015) Impeding the Interaction between Nur77 and p38 Reduces LPS-Induced Inflammation. Nature Chemical Biology, 11, 339-346. https://doi.org/10.1038/nchembio.1788 |
[21] |
Li, X.M., Zhang, S., He, X.S., et al. (2016) Nur77-Mediated TRAF6 Signalling Protects against LPS-Induced Sepsis in Mice. Journal of Inflammation (London), 13, Article No. 4. https://doi.org/10.1186/s12950-016-0112-9 |
[22] |
Yan, J., et al. (2020) Nur77 Attenuates Inflammatory Responses and Oxidative Stress by Inhibiting Phosphorylated IκB-α in Parkinson’s Disease Cell Model. Aging (Albany NY), 12, 8107-8119. https://doi.org/10.18632/aging.103128 |
[23] |
Tian, H., Huang, J., Wu, J., et al. (2022) Nur77 Prevents Osteoporosis by Inhibiting the NF-κB Signalling Pathway and Osteoclast Differentiation. Journal of Cellular and Mo-lecular Medicine, 26, 2163-2176. https://doi.org/10.1111/jcmm.17238 |
[24] |
Popichak, K.A., Hammond, S.L., Moreno, J.A., et al. (2018) Compensa-tory Expression of Nur77 and Nurr1 Regulates NF-κB-Dependent Inflammatory Signaling in Astrocytes. Molecular Pharmacology, 94, 1174-1186. https://doi.org/10.1124/mol.118.112631 |
[25] |
Zhang, H., Geng, N., Sun, L., et al. (2021) Nuclear Receptor Nur77 Protects against Abdominal Aortic Aneurysm by Ameliorating Inflammation Via Suppressing LOX-1. Journal of the American Heart Association, 10, e021707. https://doi.org/10.1161/JAHA.121.021707 |
[26] |
Patino-Martinez, E., Solís-Barbosa, M.A., Santana, E., et al. (2022) The Nurr7 Agonist Cytosporone B Differentially Regulates Inflammatory Responses in Human Polarized Macrophages. Immunobiology, 227, Article ID: 152299. https://doi.org/10.1016/j.imbio.2022.152299 |
[27] |
Chen, J., Jia, J., Ma, L., et al. (2021) Nur77 Deficiency Exacer-bates Cardiac Fibrosis after Myocardial Infarction by Promoting Endothelial-to-Mesenchymal Transition. Journal of Cel-lular Physiology, 236, 495-506. https://doi.org/10.1002/jcp.29877 |
[28] |
Hilgendorf, I., Gerhardt, L.M.S., Tan, T.C., et al. (2014) Ly-6Chigh Mon-ocytes Depend on Nr4a1 to Balance both Inflammatory and Reparative Phases in the Infarcted Myocardium. Circulation Research, 114, 1611-1622. https://doi.org/10.1161/CIRCRESAHA.114.303204 |
[29] |
Banno, A., Lakshmi, S.P., Reddy, A.T., Kim, S.C. and Reddy, R.C. (2019) Key Functions and Therapeutic Prospects of Nur77 in Inflammation Related Lung Diseases. The American Journal of Pathology, 189, 482-491. https://doi.org/10.1016/j.ajpath.2018.10.002 |
[30] |
Kurakula, K., Vos, M., Logiantara, A., et al. (2015) Nuclear Re-ceptor Nur77 Attenuates Airway Inflammation in Mice by Suppressing NF-kappaB Activity in Lung Epithelial Cells. The Journal of Immunology, 195, 1388-1398. https://doi.org/10.4049/jimmunol.1401714 |
[31] |
冯丹, 霍炎. 孤儿核受体Nur77对哮喘小鼠气道重构的作用研究[J]. 中国临床药理学杂志, 2019, 35(15): 1621-1624. |
[32] |
Ao, M., Zhang, J., Qian, Y., et al. (2022) Design and Synthesis of Adamantyl-Substituted Flavonoid Derivatives as Anti-Inflammatory Nur77 Modulators: Compound B7 Targets Nur77 and Improves LPS-Induced Inflammation in Vitro and in Vivo. Bioorganic Chemistry, 120, Article ID: 105645. https://doi.org/10.1016/j.bioorg.2022.105645 |
[33] |
Zhu, P., Wang, J., Du, W., et al. (2022) NR4A1 Pro-motes LPS-Induced Acute Lung Injury through Inhibition of Opa1-Mediated Mitochondrial Fusion and Activation of PGAM5-Related Necroptosis. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 6638244. https://doi.org/10.1155/2022/6638244 |
[34] |
Jiang, Y., Zeng, Y., Huang, X., et al. (2016) Nur77 Attenuates Endo-thelin-1 Expression via Downregulation of NF-κB and p38 MAPK in A549 Cells and in an ARDS Rat Model. The American Journal of Physiology-Lung Cellular and Molecular Physiology, 311, L1023-L1035. https://doi.org/10.1152/ajplung.00043.2016 |
[35] |
Fang, H., Zhang, J., Ao, M., et al. (2020) Synthesis and Discov-ery of ω-3 Polyunsaturated Fatty Acid-Alkanolamine (PUFA-AA) Derivatives as Anti-Inflammatory Agents Targeting Nur77. Bioorganic Chemistry, 105, Article ID: 104456. https://doi.org/10.1016/j.bioorg.2020.104456 |
[36] |
Zhu, N., Zhang, J., Yi, B., et al. (2019) Nur77 Limits Endotheli-al Barrier Disruption to LPS in the Mouse Lung. The American Journal of Physiology-Lung Cellular and Molecular Physiology, 317, L615-L624. https://doi.org/10.1152/ajplung.00425.2018 |
[37] |
Kurakula, K., Sun, X., Happé, C., et al. (2019) Prevention of Pro-gression of Pulmonary Hypertension by the Nur77 Agonist 6-Mercaptopurine: Role of BMP Signalling. European Res-piratory Journal, 54, Article ID: 1802400. https://doi.org/10.1183/13993003.02400-2018 |
[38] |
邓俊华, 王志波, 黄表华. 慢性阻塞性肺疾病患者血清NR4 A1表达及临床意义[J]. 临床肺科杂志, 2021, 26(7): 1034-1037. |
[39] |
Deng, Z., Liu, Q., Wang, M., Wei, H.K. and Peng, J. (2020) GPA Peptide-Induced Nur77 Localization at Mitochondria Inhibits Inflammation and Oxidative Stress through Activating Autophagy in the Intestine. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 4964202. https://doi.org/10.1155/2020/4964202 |
[40] |
Deng, Z., Zheng, L., Xie, X., Wei, H. and Peng, J. (2020) GPA Peptide Enhances Nur77 Expression in Intestinal Epithelial Cells to Exert a Protective Effect against DSS-Induced Colitis. FASEB Journal, 34, 15364-15378. https://doi.org/10.1096/fj.202000391RR |
[41] |
Hamers, A.A., Dam, L.V., Duarte, J.T., et al. (2015) Deficiency of Nuclear Receptor Nur77 Aggravates Mouse Experimental Colitis by Increased NFkappaB Activity in Macrophages. PLOS ONE, 10, e0133598. https://doi.org/10.1371/journal.pone.0133598 |
[42] |
Wu, H., Li, X., Wang, J., et al. (2016) NUR77 Exerts a Protec-tive Effect against Inflammatory Bowel Disease by Negatively Regulating the TRAF6/TLR-IL-1R Signalling Axis. The Journal of Pathology, 238, 457-469. https://doi.org/10.1002/path.4670 |
[43] |
Yuan, R., Zhang, W., Nie, P., et al. (2022) Nur77 Deficiency Exacerbates Macrophage NLRP3 Inflammasome-Mediated Inflammation and Accelerates Atherosclerosis. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 2017815. https://doi.org/10.1155/2022/2017815 |
[44] |
Yoshida, K., Okamura, H., Hiroshima, Y., et al. (2017) PKR Induces the Expression of NLRP3 by Regulating the NF-κB Pathway in Porphyromonas gingivalis-Infected Osteoblasts. Ex-perimental Cell Research, 354, 57-64. https://doi.org/10.1016/j.yexcr.2017.03.028 |
[45] |
Zhao, W., Ma, L., Cai, C. and Gong, X. (2019) Caffeine Inhibits NLRP3 Inflammasome Activation by Suppressing MAPK/NF-κB and A2aR Signaling in LPS-Induced THP-1 Macro-phages. International Journal of Biological Sciences, 15, 1571-1581. https://doi.org/10.7150/ijbs.34211 |
[46] |
Wei, Y.Y., Fan, Y.M., Ga, Y., et al. (2021) Shaoyao Decoction Attenuates DSS-Induced Ulcerative Colitis, Macrophage and NLRP3 Inflammasome Activation through the MKP1/NF-κB Pathway. Phytomedicine, 92, Article ID: 153743. https://doi.org/10.1016/j.phymed.2021.153743 |
[47] |
An, Y., Zhang, H., Wang, C., et al. (2019) Activation of ROS/MAPKs/NF-κB/NLRP3 and Inhibition of Efferocytosis in Osteoclast-Mediated Diabetic Osteoporosis. FASEB Journal, 33, 12515-12527. https://doi.org/10.1096/fj.201802805RR |
[48] |
Zhang, Y., Liu, W., Zhong, Y., et al. (2021) Metformin Corrects Glucose Metabolism Reprogramming and NLRP3 Inflammasome-Induced Pyroptosis via Inhibiting the TLR4/NF-κB/PFKFB3 Signaling in Trophoblasts: Implication for a Potential Therapy of Preeclampsia. Oxidative Medi-cine and Cellular Longevity, 2021, Article ID: 1806344. https://doi.org/10.1155/2021/1806344 |
[49] |
Liu, Z., Yao, X., Jiang, W., et al. (2020) Advanced Oxidation Protein Products Induce Microglia-Mediated Neuroinflammation via MAPKs-NF-κB Signaling Pathway and Pyroptosis after Secondary Spinal Cord Injury. Journal of Neuroinflammation, 17, Article No. 90. https://doi.org/10.1186/s12974-020-01751-2 |
[50] |
Ding, R., Sun, X., Yi, B., et al. (2021) Nur77 Attenuates In-flammasome Activation by Inhibiting Caspase-1 Expression in Pulmonary Vascular Endothelial Cells. American Journal of Respiratory Cell and Molecular Biology, 65, 288-299. https://doi.org/10.1165/rcmb.2020-0524OC |
[51] |
Sommer, N., Pak, O. and Hecker, M. (2021) New Avenues for Antiinflammatory Signaling of Nur77 in Acute Lung Injury. American Journal of Respiratory Cell and Molecular Biol-ogy, 65, 236-237. https://doi.org/10.1165/rcmb.2021-0210ED |
[52] |
Deng, Z., Yang, Z., Cui, C., et al. (2021) NR4A1 Suppresses Pyroptosis by Transcriptionally Inhibiting NLRP3 and IL-1β and Co-Localizing with NLRP3 in Trans-Golgi to Alleviate Pathogenic Bacteria-Induced Colitis. Clinical and Translational Medicine, 11, e639. https://doi.org/10.1002/ctm2.639 |