[1] |
Tremblay-Mercier, J., Madjar, C., Das, S., et al. (2021) Open Science Datasets from PREVENT-AD, a Longitudinal Cohort of Pre-Symptomatic Alzheimer’s Disease. NeuroImage: Clinical, 31, Article ID: 102733. https://doi.org/10.1016/j.nicl.2021.102733 |
[2] |
Jeremic, D., Jiménez-Díaz, L. and Navarro-López, J.D. (2021) Past, Present and Future of Therapeutic Strategies against Amyloid-β Peptides in Alzheimer’s Disease: A Systematic Review. Ageing Research Reviews, 72, Article ID: 101496. https://doi.org/10.1016/j.arr.2021.101496 |
[3] |
Gouilly, D., Rafiq, M., Nogueira, L., et al. (2023) Beyond the Am-yloid Cascade: An Update of Alzheimer’s Disease Pathophysiology. Revue Neurologique. https://doi.org/10.1016/j.neurol.2022.12.006 |
[4] |
Dhami, M., Raj, K. and Singh, S. (2023) Relevance of Gut Mi-crobiota to Alzheimer’s Disease (AD): Potential Effects of Probiotic in Management of AD. Aging and Health Research, 3, Article ID: 100128. https://doi.org/10.1016/j.ahr.2023.100128 |
[5] |
Krishaa, L., Ng, T.K.S., Wee, H.N. and Ching, J. (2023) Gut-Brain Axis through the Lens of Gut Microbiota and Their Relationships With Alzheimer’s Disease Pathology: Review and Recommendations. Mechanisms of Ageing and Development, 211, Article ID: 111787. https://doi.org/10.1016/j.mad.2023.111787 |
[6] |
Wang, Z., Gao, C., Zhang, L. and Sui, R. (2023) Hesperidin Methylchalcone (HMC) Hinders Amyloid-β Induced Alzheimer’s Disease by Attenuating Cholinesterase Activity, Mac-romolecular Damages, Oxidative Stress and Apoptosis via Regulating NF-κB and Nrf2/HO-1 Pathways. International Journal of Biological Macromolecules, 233, Article ID: 123169. https://doi.org/10.1016/j.ijbiomac.2023.123169 |
[7] |
Sethi, B., Kumar, V., Mahato, K., Coulter, D.W. and Mahato, R.I. (2022) Recent Advances in Drug Delivery and Targeting to the Brain. Journal of Controlled Release, 350, 668-687. https://doi.org/10.1016/j.jconrel.2022.08.051 |
[8] |
Zhang, Z., Yang, X., Song, Y.-Q. and Tu, J. (2021) Autophagy in Alzheimer’s Disease Pathogenesis: Therapeutic Potential and Future Perspectives. Ageing Research Reviews, 72, Arti-cle ID: 101464. https://doi.org/10.1016/j.arr.2021.101464 |
[9] |
Bai, R., Guo, J., Ye, X.-Y., Xie, Y. and Tian, X. (2022) Oxidative Stress: The Core Pathogenesis and Mechanism of Alzheimer’s Disease. Ageing Research Reviews, 77, Article ID: 101619. https://doi.org/10.1016/j.arr.2022.101619 |
[10] |
Briyal, S., Ranjan, A.K. and Gulati, A. (2023) Oxidative Stress: A Target to Treat Alzheimer’s Disease and Stroke. Neurochemistry International, 165, Article ID: 105509. https://doi.org/10.1016/j.neuint.2023.105509 |
[11] |
Ho, T., Ahmadi, S. and Kerman, K. (2022) Do Glutathione and Copper Interact to Modify Alzheimer’s Disease Pathogenesis? Free Radical Biology and Medicine, 181, 180-196. https://doi.org/10.1016/j.freeradbiomed.2022.01.025 |
[12] |
Susmitha, G. and Kumar, R. (2023) Role of Microbial Dysbiosis in the Pathogenesis of Alzheimer’s Disease. Neuropharmacology, 229, Article ID: 109478. https://doi.org/10.1016/j.neuropharm.2023.109478 |
[13] |
Lauretti, E., Dabrowski, K. and Pratico, D. (2021) The Neurobiology of Non-Coding RNAs and Alzheimer’s Disease Pathogenesis: Pathways, Mechanisms and Translational Opportunities. Ageing Research Reviews, 71, Article ID: 101425. https://doi.org/10.1016/j.arr.2021.101425 |
[14] |
Matsuzaki, K. (2022) Aβ-Ganglioside Interactions in the Pathogene-sis of Alzheimer’s Disease. Biochimica et Biophysica Acta (BBA)-Biomembranes, 186, Article ID: 183233. https://doi.org/10.1016/j.bbamem.2020.183233 |
[15] |
Evering, T.H., Marston, J.L., Gan, L. and Nixon, D.F. (2022) Transposable Elements and Alzheimer’s Disease Pathogenesis. Trends in Neurosciences, 46, 170-172. https://doi.org/10.1016/j.tins.2022.12.003 |
[16] |
Long, J.M. and Holtzman, D.M. (2019) Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell, 179, 312-339. https://doi.org/10.1016/j.cell.2019.09.001 |
[17] |
Knight, R., Khondoker, M., Magill, N., et al. (2018) A Systematic Review and Meta-Analysis of the Effectiveness of Acetylcholinesterase Inhibitors and Memantine in Treating the Cogni-tive Symptoms of Dementia. Dementia and Geriatric Cognitive Disorders, 45, 131-151. https://doi.org/10.1159/000486546 |
[18] |
Cummings, J., Lee, G., Zhong, K., Fonseca, J. and Taghva, K. (2021) Alzheimer’s Disease Drug Development Pipeline: 2021. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 7, e12179. https://doi.org/10.1002/trc2.12179 |
[19] |
Hara, Y., Mckeehan, N. and Fillit, H.M. (2019) Translating the Biology of Aging into Novel Therapeutics for Alzheimer Disease. Neurology, 92, 84-93. https://doi.org/10.1212/WNL.0000000000006745 |
[20] |
Xun, C., Ge, L., Tang, F., et al. (2020) Insight into the Proteomic Profiling of Exosomes Secreted by Human OM-MSCs Reveals a New Potential Therapy. Biomedicine & Pharmacotherapy, 131, Article ID: 110584. https://doi.org/10.1016/j.biopha.2020.110584 |
[21] |
Bao, C. and He, C. (2021) The Role and Therapeutic Potential of MSC-Derived Exosomes in Osteoarthritis. Archives of Biochemistry and Biophysics, 710, Article ID: 109002. https://doi.org/10.1016/j.abb.2021.109002 |
[22] |
Chavda, V.P., Pandya, A., Kumar, L., et al. (2023) Exosome Nan-ovesicles: A Potential Carrier for Therapeutic Delivery. Nano Today, 49, Article ID: 101771. https://doi.org/10.1016/j.nantod.2023.101771 |
[23] |
Ding, D.-C., Shyu, W.-C. and Lin, S.Z. (2011) Mesenchymal Stem Cells. Cell Transplant, 20, 5-14. https://doi.org/10.3727/096368910X |
[24] |
Valerio, L.S.A. and Sugaya, K. (2020) Xeno- and Transgene-Free Re-programming of Mesenchymal Stem Cells toward the Cells Expressing Neural Markers Using Exosome Treatments. PLOS ONE, 15, e0240469. https://doi.org/10.1371/journal.pone.0240469 |
[25] |
Hoban, D.B., Howard, L. and Dowd, E. (2015) GDNF-Secreting Mesenchymal Stem Cells Provide Localized Neuroprotection in an Inflammation-Driven Rat Model of Parkinson’s Disease. Neuroscience, 303, 402-411. https://doi.org/10.1016/j.neuroscience.2015.07.014 |
[26] |
Ji, S., Lin, S., Chen, J., et al. (2018) Neuroprotection of Transplanting Human Umbilical Cord Mesenchymal Stem Cells in a Microbead Induced Ocular Hypertension Rat Model. Current Eye Research, 43, 810-820. https://doi.org/10.1080/02713683.2018.1440604 |
[27] |
Mathew, B., Ravindran, S., Liu, X., et al. (2019) Mesen-chymal Stem Cell-Derived Extracellular Vesicles and Retinal Ischemia-Reperfusion. Biomaterials, 197, 146-160. https://doi.org/10.1016/j.biomaterials.2019.01.016 |
[28] |
Wang, L., Pei, S., Han, L., et al. (2018) Mesenchymal Stem Cell-Derived Exosomes Reduce A1 Astrocytes via Downregulation of Phosphorylated NFκB P65 Subunit in Spinal Cord Injury. Cellular Physiology and Biochemistry, 50, 1535-1559. https://doi.org/10.1159/000494652 |
[29] |
Klein, C., Roussel, G., Brun, S., et al. (2018) 5-HIAA Induces Neprilysin to Ameliorate Pathophysiology and Symptoms in a Mouse Model for Alzheimer’s Disease. Acta Neuropathologica Communications, 6, Article No. 136. https://doi.org/10.1186/s40478-018-0640-z |
[30] |
Zhang, T., Ma, S., Lv, J., et al. (2021) The Emerging Role of Ex-osomes in Alzheimer’s Disease. Ageing Research Reviews, 68, Article ID: 101321. https://doi.org/10.1016/j.arr.2021.101321 |
[31] |
Chen, W., Huang, Y., Han, J., et al. (2016) Immunomodulatory Ef-fects of Mesenchymal Stromal Cells-Derived Exosome. Immunologic Research, 64, 831-840. https://doi.org/10.1007/s12026-016-8798-6 |
[32] |
Yuyama, K., Sun, H., Mitsutake, S. and Igarashi, Y. (2012) Sphingolipid-Modulated Exosome Secretion Promotes Clearance of Amyloid-β by Microglia. Journal of Biological Chemistry, 287, 10977-10989. https://doi.org/10.1074/jbc.M111.324616 |
[33] |
Yuyama, K., Sun, H., Sakai, S., et al. (2014) Decreased Amyloid-β Pathologies by Intracerebral Loading of Glycosphingolipid-enriched Exosomes in Alzheimer Model Mice. Journal of Bi-ological Chemistry, 289, 24488-24498. https://doi.org/10.1074/jbc.M114.577213 |
[34] |
Yoon, S.S. and Jo, S.-A. (2012) Mechanisms of Amyloid-β Peptide Clearance: Potential Therapeutic Targets for Alzheimer’s Disease. Biomolecules & Therapeutics, 20, 245-255. https://doi.org/10.4062/biomolther.2012.20.3.245 |
[35] |
Nalivaeva, N.N., Zhuravin, I.A. and Turner, A.J. (2020) Neprilysin Expression and Functions in Development, Ageing and Disease. Mechanisms of Ageing and Development, 192, Article ID: 111363. https://doi.org/10.1016/j.mad.2020.111363 |
[36] |
Zhang, H., Liu, D., Wang, Y., et al. (2017) Meta-Analysis of Ex-pression and Function of Neprilysin in Alzheimer’s Disease. Neuroscience Letters, 657, 69-76. https://doi.org/10.1016/j.neulet.2017.07.060 |
[37] |
Li, Y., Wang, Y., Wang, J., et al. (2020) Expression of Nepri-lysin in Skeletal Muscle by Ultrasound-Mediated Gene Transfer (Sonoporation) Reduces Amyloid Burden for AD. Methods & Clinical Development, 17, 300-308. https://doi.org/10.1016/j.omtm.2019.12.012 |
[38] |
Katsuda, T., Tsuchiya, R., Kosaka, N., et al. (2013) Human Adi-pose Tissue-Derived Mesenchymal Stem Cells Secrete Functional Neprilysin-Bound Exosomes. Scientific Reports, 3, Article No. 1197. https://doi.org/10.1038/srep01197 |
[39] |
Meghana, G.S., Gowda, D.V., Chidambaram, S.B. and Osmani, R.A. (2023) Amyloid-β Pathology in Alzheimer’s Disease: A Nano Delivery Approach. Vibrational Spectros-copy, 126, Article ID: 103510. https://doi.org/10.1016/j.vibspec.2023.103510 |
[40] |
Wang, J., Tang, W., Yang, M., et al. (2021) Inflammatory Tu-mor Microenvironment Responsive Neutrophil Exosomes-Based Drug Delivery System for Targeted Glioma Therapy. Biomaterials, 273, Article ID: 120784. https://doi.org/10.1016/j.biomaterials.2021.120784 |
[41] |
Gao, J., Dong, X., Su, Y. and Wang, Z. (2021) Human Neutrophil Membrane-Derived Nanovesicles as a Drug Delivery Platform for Improved Therapy of Infectious Diseases. Acta Biomaterialia, 123, 354-363. https://doi.org/10.1016/j.actbio.2021.01.020 |
[42] |
Wang, H., Sui, H., Zheng, Y., et al. (2019) Curcumin-Primed Exosomes Potently Ameliorate Cognitive Function in Ad Mice by Inhibiting Hyperphosphorylation of the Tau Protein through the AKT/GSK-3β Pathway. Nanoscale, 11, 7481-7496. https://doi.org/10.1039/C9NR01255A |
[43] |
Fayazi, N., Sheykhhasan, M., Soleimani Asl, S. and Najafi, R. (2021) Stem Cell-Derived Exosomes: A New Strategy of Neuro-degenerative Disease Treatment. Molecular Neurobiology, 58, 3494-3514. https://doi.org/10.1007/s12035-021-02324-x |
[44] |
Xi, Y., Chen, Y., Jin, Y., et al. (2022) Versatile Nanomaterials for Alzheimer’s Disease: Pathogenesis Inspired Disease-Modifying Therapy. Journal of Controlled Release, 345, 38-61. https://doi.org/10.1016/j.jconrel.2022.02.034 |