[1] |
Mücke, M., Phillips, T., Radbruch, L., et al. (2018) Cannabis-Based Medicines for Chronic Neuropathic Pain in Adults. Cochrane Database of Systematic Reviews, 3, Article No. CD012182. https://doi.org/10.1002/14651858.CD012182.pub2 |
[2] |
Kocot-Kępska, M., Zajączkowska, R., Mika, J., et al. (2021) Topical Treatments and Their Molecular/Cellular Mechanisms in Patients with Peripheral Neuropathic Pain-Narrative Review. Pharmaceutics, 13, Article 450. https://doi.org/10.3390/pharmaceutics13040450 |
[3] |
杜涛, 袁文茜, 曹伯旭, 等. 慢性神经病理性疼痛[J]. 中国疼痛医学杂志, 2021, 27(7): 481-485. |
[4] |
Casey, S.L. and Vaughan, C.W. (2018) Plant-Based Cannabinoids for the Treatment of Chronic Neuropathic Pain. Medicines (Basel), 5, Article 67. https://doi.org/10.3390/medicines5030067 |
[5] |
Turk, D.C., Audette, J., Levy, R.M., et al. (2010) Assessment and Treatment of Psychosocial Comorbidities in Patients with Neuropathic Pain. Mayo Clinic Proceedings, 85, 42-50. https://doi.org/10.4065/mcp.2009.0648 |
[6] |
Mlost, J., Bryk, M. and Starowicz, K. (2020) Cannabidiol for Pain Treatment: Focus on Pharmacology and Mechanism of Action. International Journal of Molecular Sciences, 21, Article 8870. https://doi.org/10.3390/ijms21228870 |
[7] |
李倩, 李玲玲, 李爽, 等. 脊髓A1型星形胶质细胞在外周炎性痛中的动态变化[J]. 中国实验动物学报, 2021, 29(5): 578-584. |
[8] |
Kim, Y.C., Castañeda, A.M., Lee, C.S., et al. (2018) Efficacy and Safety of Lidocaine Infusion Treatment for Neuropathic Pain: A Randomized, Double-Blind, and Placebo-Controlled Study. Regional Anesthesia & Pain Medicine, 43, 415-424. https://doi.org/10.1097/AAP.0000000000000741 |
[9] |
Alcántara Montero, A., Sánchez Carnerero, C.I. and Goi-coechea García, C. (2019) Emerging Therapies in Clinical Development and New Contributions for Neuropathic Pain. Revista Española de Anestesiología y Reanimación, 66, 324-334. https://doi.org/10.1016/j.redare.2019.02.004 |
[10] |
Egunsola, O., Wylie, C.E., Chitty, K.M., et al. (2019) Systematic Review of the Efficacy and Safety of Gabapentin and Pregabalin for Pain in Children and Adolescents. Anesthesia & An-algesia, 128, 811-819. https://doi.org/10.1213/ANE.0000000000003936 |
[11] |
Tzimas, P.S., Petrakis, E.A., Halabalaki, M., et al. (2021) Effective Determination of the Principal Non-Psychoactive Cannabinoids in Fiber-Type Cannabis sativa L. by UPLC-PDA Following a Comprehensive Design and Optimization of Extraction Methodolog. Analytica Chimica Acta, 1150, Article ID: 338200. https://doi.org/10.1016/j.aca.2021.338200 |
[12] |
沈宝玉, 任雁明, 杨根梦, 等. 大麻二酚减轻甲基苯丙胺诱导的大鼠单胺类神经递质改变[J]. 中国比较医学杂志, 2022, 32(11): 18-25. |
[13] |
García-Gutiérrez, M.S., Navarrete, F., Gasparyan, A., et al. (2020) Cannabidiol: A Potential New Alternative for the Treatment of Anxiety, Depression, and Psychotic Disorders. Biomolecules, 10, Article 1575. https://doi.org/10.3390/biom10111575 |
[14] |
Abraham, A.D., Leung, E.J.Y., Wong, B.A., et al. (2020) Orally Consumed Cannabinoids Provide Long-Lasting Relief of Allodynia in a Mouse Model of Chronic Neuropathic Pain. Neuropsychopharmacology, 45, 1105-1114. https://doi.org/10.1038/s41386-019-0585-3 |
[15] |
Xiong, W., Cui, T., Cheng, K., et al. (2012) Cannabinoids Sup-press Inflammatory and Neuropathic Pain by Targeting α3 Glycine Receptors. Journal of Experimental Medicine, 209, 1121-1134. https://doi.org/10.1084/jem.20120242 |
[16] |
King, K.M., Myers, A.M., Soroka-Monzo, A.J., et al. (2017) Single and Combined Effects of Δ9-Tetrahydrocannabinol and Cannabidiol in a Mouse Model of Chemothera-py-Induced Neuropathic Pain. British Journal of Pharmacology, 74, 2832-2841. https://doi.org/10.1111/bph.13887 |
[17] |
Muller, C., Morales, P. and Reggio, P.H. (2019) Cannabinoid Ligands Targeting TRP Channels. Frontiers in Molecular Neuroscience, 11, Article 487. https://doi.org/10.3389/fnmol.2018.00487 |
[18] |
潘倩, 田晓明, 尹毅青. 瞬时感受器电位香草酸亚型1受体及其调节剂对神经病理性疼痛的作用研究进展[J]. 国际药学研究杂志, 2020, 47(6): 409-414. |
[19] |
Marwaha, L., Bansal, Y., Singh, R., et al. (2016) TRP Channels: Potential Drug Target for Neuropathic Pain. Inflammopharmacology, 24, 305-317. https://doi.org/10.1007/s10787-016-0288-x |
[20] |
Soubrane, C., Mazzarella, E., Russo, E., et al. (2014) Nonpsychotropic Plant Cannabinoids, Cannabidivarin (CBDV) and Cannabidiol (CBD), Activate and Desensitize Tran-sient Receptor Potential Vanilloid 1 (TRPV1) Channels in Vitro: Potential for the Treatment of Neuronal Hyperexcitabil-ity. ACS Chemical Neuroscience, 5, 1131-1141. https://doi.org/10.1021/cn5000524 |
[21] |
Baker, M.D. and Nassar, M.A. (2020) Painful and Painless Mutations of SCN9A and SCN11A Voltage-Gated Sodium Channels. Pflügers Archiv, 472, 865-880. https://doi.org/10.1007/s00424-020-02419-9 |
[22] |
McDermott, L.A., Weir, G.A., Themistocleous, A.C., et al. (2019) Defining the Functional Role of NaV1.7 in Human Nociception. Neuron, 101, 905-919.e8. https://doi.org/10.1016/j.neuron.2019.01.047 |
[23] |
Hameed, S. (2019) Nav1.7 and Nav1.8: Role in the Pathophysi-ology of Pain. Molecular Pain, 15, 1-11. https://doi.org/10.1177/1744806919858801 |
[24] |
Tzoumaka, E., Tischler, A.C., Sangameswaran, L., et al. (2000) Differential Distribution of the Tetrodotoxin-Sensitive rPN4/NaCh6/Scn8a Sodium Channel in the Nervous System. Journal of Neuroscience Research, 60, 37-44. https://doi.org/10.1002/(SICI)1097-4547(20000401)60:1<37::AID-JNR4>3.0.CO;2-W |
[25] |
Ding, H.H., Zhang, S.B., Lv, Y.Y., et al. (2019) TNF-α/STAT3 Pathway Epigenetically Upregulates Nav1.6 Expression in DRG and Con-tributes to Neuropathic Pain Induced by L5-VRT. Journal of Neuroinflammation, 6, Article No. 29. https://doi.org/10.1186/s12974-019-1421-8 |
[26] |
Sait, L.G., Sula, A., Ghovanloo, M.R., et al. (2020) Cannabidiol Interactions with Voltage-Gated Sodium Channels. Elife, 9, e58593. https://doi.org/10.7554/eLife.58593 |
[27] |
Watkins, A.R. (2019) Cannabinoid Interactions with Ion Channels and Receptors. Channels (Austin), 13, 162-167. https://doi.org/10.1080/19336950.2019.1615824 |
[28] |
Ghovanloo, M.R., Shuart, N.G., Mezeyova, J., et al. (2018) Inhibitory Effects of Cannabidiol on Voltage-Dependent Sodium Currents. Journal of Biological Chemistry, 293, 16546-16558. https://doi.org/10.1074/jbc.RA118.004929 |
[29] |
Breitinger, U. and Breitinger, H.G. (2020) Modula-tors of the Inhibitory Glycine Receptor. ACS Chemical Neuroscience, 11, 1706-1725. https://doi.org/10.1021/acschemneuro.0c00054 |
[30] |
Zeilhofer, H.U., Werynska, K., Gingras, J., et al. (2021) Gly-cine Receptors in Spinal Nociceptive Control—An Update. Biomolecules, 11, Article 846. https://doi.org/10.3390/biom11060846 |
[31] |
Silvestro, S., Schepici, G., Bramanti, P., et al. (2020) Molecular Tar-gets of Cannabidiol in Experimental Models of Neurological Disease. Molecules, 25, Article 5186. https://doi.org/10.3390/molecules25215186 |
[32] |
Haleem, D.J. (2019) Targeting Serotonin1A Receptors for Treat-ing Chronic Pain and Depression. Current Neuropharmacology, 17, 1098-1108. https://doi.org/10.2174/1570159X17666190811161807 |
[33] |
Jesus, C.H.A., Redivo, D.D.B., Gasparin, A.T., et al. (2019) Cannabidiol Attenuates Mechanical Allodynia in Streptozotocin-Induced Diabetic Rats via Serotonergic System Activation through 5-HT1A Receptors. Brain Research, 1715, 156-164. https://doi.org/10.1016/j.brainres.2019.03.014 |
[34] |
De Gregorio, D., McLaughlin, R.J., Posa, L., et al. (2019) Cannabidiol Modulates Serotonergic Transmission and Reverses both Allodynia and Anxiety-Like Behavior in a Model of Neuropathic Pain. Pain, 160, 136-150. https://doi.org/10.1097/j.pain.0000000000001386 |