[1] |
Merikangas, K.R., Jin, R., He, J.-P., et al. (2011) Prevalence and Correlates of Bipolar Spectrum Disorder in the World Mental Health Survey Initiative. Archives of General Psychiatry, 682, 41-51. https://doi.org/10.1001/archgenpsychiatry.2011.12 |
[2] |
Martinez-Aran, A., Vieta, E., Torrent, C., et al. (2007) Functional Out-come in Bipolar Disorder: The Role of Clinical and Cognitive Factors. Bipolar Disorders, 9, 103-113. https://doi.org/10.1111/j.1399-5618.2007.00327.x |
[3] |
Elias, L.R., Miskowiak, K.W., Vale, A.M.O., et al. (2017) Cog-nitive Impairment in Euthymic Pediatric Bipolar Disorder: A Systematic Review and Meta-Analysis. Journal of the American Academy of Child and Adolescent Psychiatry, 56, 286-296. https://doi.org/10.1016/j.jaac.2017.01.008 |
[4] |
Miskowiak, K.W., Kjærstad, H.L., Meluken, I., et al. (2017) The Search for Neuroimaging and Cognitive Endophenotypes: A Critical Systematic Review of Studies Involving Unaffected First-Degree Relatives of Individuals with Bipolar Disorder. Neuroscience and Biobehavioral Reviews, 73, 1-22. https://doi.org/10.1016/j.neubiorev.2016.12.011 |
[5] |
Bora, E., Yucel, M. and Pantelis, C. (2009) Cognitive Endophenotypes of Bipolar Disorder: A Meta-Analysis of Neuropsychological Deficits in Euthymic Patients and Their First-Degree Relatives. Journal of Affective Disorders, 113, 1-20. https://doi.org/10.1016/j.jad.2008.06.009 |
[6] |
Ray H. Hashemi, William G. Bradley Jr., Christo-pher J. Lisanti. MRI基础[M]. 第2版. 尹建忠, 译. 天津: 天津科技翻译出版公司, 2004. |
[7] |
孙尧, 王颖, 黄力. 双相情感障碍的静息态功能MRI研究进展[J]. 磁共振成像, 2016(1): 77-80. |
[8] |
Tryon, W.W. (2014) Chapter 3: Core Network Principles: The Explanatory Nucleus. In: Tryon, W.W., Ed., Cognitive Neuroscience and Psychotherapy, Academic Press, Cambridge, 125-222. https://doi.org/10.1016/B978-0-12-420071-5.00003-X |
[9] |
Raichle, M.E. (2015) The Brain’s Default Mode Network. Annual Review of Neuroscience, 38, 433-447. https://doi.org/10.1146/annurev-neuro-071013-014030 |
[10] |
Damasio, H., Grabowski, T., Frank, R., Galaburda, A.M. and Damasio, A.R. (1994) The Return of Phineas Gage: Clues about the Brain from the Skull of a Famous Patient. Science, 264, 1102-1105. https://doi.org/10.1126/science.8178168 |
[11] |
Leech, R. and Sharp, D.J. (2013) The Role of the Posterior Cingulate Cortex in Cognition and Disease. Brain, 137, 12-32. https://doi.org/10.1093/brain/awt162 |
[12] |
Wang, Y., Wang, J., Jia, Y., et al. (2017) Topologically Convergent and Divergent Functional Connectivity Patterns in Unmedicated Unipolar Depression and Bipolar Disorder. Translational Psychiatry, 7, e1165. https://doi.org/10.1038/tp.2017.117 |
[13] |
Yang, Y., Cui, Q., Lu, F., et al. (2021) Default Mode Network Subsystem Alterations in Bipolar Disorder during Major Depressive Episode. Journal of Affective Disorders, 281, 856-264. https://doi.org/10.1016/j.jad.2020.11.049 |
[14] |
Wang, Y., Zhong, S., Jia, Y., Sun, Y., Wang, B., Liu, T., Pan, J. and Huang, L. (2016) Disrupted Resting-State Functional Connectivity in Nonmedicated Bipolar Disorder. Radiology, 280, 529-536. https://doi.org/10.1148/radiol.2016151641 |
[15] |
Wang, Y., Zhong, S., Chen, G., et al. (2018) Altered Cerebellar Functional Con-nectivity in Remitted Bipolar Disorder: A Resting-State Functional Magnetic Resonance Imaging Study. Australian & New Zealand Journal of Psychiatry, 52, 962-971. https://doi.org/10.1177/0004867417745996 |
[16] |
Magioncalda, P., Martino, M., Conio, B., et al. (2015) Functional Connectivity and Neuronal Variability of Resting State Activity in Bipolar Disorder—Reduction and Decoupling in Anterior Cortical Midline Structures. Human Brain Mapping, 36, 666-682. https://doi.org/10.1002/hbm.22655 |
[17] |
Rive, M.M., Redlich, R., Schmaal, L., Marquand, A.F., Dannlowski, U., Grotegerd, D., Veltman, D.J., Schene, A.H. and Ruhé, H.G. (2016) Distinguishing Medication—Free Subjects with Unipolar Disorder from Subjects with Bipolar Disorder: State Matters. Bipolar Disor-ders, 18, 612-623. https://doi.org/10.1111/bdi.12446 |
[18] |
Khadka, S., Meda, S.A., Stevens, M.C., et al. (2013) Is Aberrant Functional Connectivity a Psychosis Endophenotype? A Resting State Functional Magnetic Resonance Imaging Study. Biological Psy-chiatry, 74, 458-466. https://doi.org/10.1016/j.biopsych.2013.04.024 |
[19] |
Yip, S.W., Mackay, C.E. and Goodwin, G.M. (2014) Increased Tempo-ro-Insular Engagement in Unmedicated Bipolar II Disorder: An Exploratory Resting State Study Using Independent Component Anal-ysis. Bipolar Disorders, 16, 748-755. https://doi.org/10.1111/bdi.12206 |
[20] |
Nguyen, T.T., Kovacevic, S., Dev, S.I., et al. (2017) Dynamic Functional Connectivity in Bipolar Disorder Is Associated with Executive Function and Processing Speed: A Preliminary Study. Neuropsychology, 31, 73-83. https://doi.org/10.1037/neu0000317 |
[21] |
Logan, R.W. and McClung, C.A. (2019) Rhythms of Life: Circadian Disruption and Brain Disorders across the Lifespan. Nature Reviews Neuroscience, 20, 49-65. https://doi.org/10.1038/s41583-018-0088-y |
[22] |
Dickerson, B.C. and Wolk, D.A. (2012) MRI Cortical Thickness Biomarker Predicts AD-Like CSF and Cognitive Decline in Normal Adults. Neurology, 78, 84-90. https://doi.org/10.1212/WNL.0b013e31823efc6c |
[23] |
Dickerson, B.C., Fenstermacher, E., Salat, D.H., et al. (2008) Detection of Cortical Thickness Correlates of Cognitive Performance: Reliability across MRI Scan Sessions, Scanners, and Field Strengths. Neu-roImage, 39, 10-18. https://doi.org/10.1016/j.neuroimage.2007.08.042 |
[24] |
Bennett, M.R. (2011) The Prefrontal-Limbic Network in Depression: A Core Pathology of Synapse Regression. Progress in Neurobiology, 93, 457-467. https://doi.org/10.1016/j.pneurobio.2011.01.001 |
[25] |
Zhu, Z., Zhao, Y., Wen, K., et al. (2022) Cortical Thickness Abnormalities in Patients with Bipolar Disorder: A Systematic Review and Meta-Analysis. Journal of Affective Disorders, 300, 209-218. https://doi.org/10.1016/j.jad.2021.12.080 |
[26] |
Abé, C., Ekman, C.-J., Sellgren, C., et al. (2016) Cortical Thickness, Volume and Surface Area in Patients with Bipolar Disorder types I and II. Journal of Psychiatry & Neuroscience, 41, 240-250. https://doi.org/10.1503/jpn.150093 |
[27] |
Shahab, S., Mulsant, B.H., Levesque, M.L., et al. (2019) Brain Structure, Cognition and Brain Age in Schizophrenia, Bipolar Disorder, and Healthy Controls. Neuropsychopharmacology, 44, 898-906. https://doi.org/10.1038/s41386-018-0298-z |
[28] |
Rimol, L.M., Hartberg, C.B., Nesvåg, R., et al. (2010) Cortical Thickness and Subcortical Volumes in Schizophrenia and Bipolar disorder. Biological Psychiatry, 68, 41-50. https://doi.org/10.1016/j.biopsych.2010.03.036 |
[29] |
Bansal, R., Hao, X., Liu, F., et al. (2013) The Effects of Changing Water Content, Relaxation Times, and Tissue Contrast on Tissue Segmentation and Measures of Cortical Anatomy in MR Images. Magnetic Resonance Imaging, 31, 1709-1730. https://doi.org/10.1016/j.mri.2013.07.017 |
[30] |
Qiu, A., Gan, S.C., Wang, Y., et al. (2013) Amygdala-Hippocampal Shape and Cortical Thickness Abnormalities in First-Episode Schizophrenia and Mania. Psychological Medicine, 43, 1353-1363. https://doi.org/10.1017/S0033291712002218 |
[31] |
Hulshoff Pol, H.E., van Baal, G.C.M., Schnack, H.G., et al. (2012) Overlap-ping and Segregating Structural Brain Abnormalities in Twins with Schizophrenia or Bipolar Disorder. Archives of General Psychiatry, 69, 349-359. https://doi.org/10.1001/archgenpsychiatry.2011.1615 |
[32] |
Carlén, M. (2017) What Constitutes the Prefrontal Cortex? Science, 358, 478-482. https://doi.org/10.1126/science.aan8868 |
[33] |
Niu, M., Wang, Y., Jia, Y., et al. (2017) Common and Specific Abnormalities in Cortical Thickness in Patients with Major Depressive and Bipolar Disorders. EBioMedicine, 16, 162-171. https://doi.org/10.1016/j.ebiom.2017.01.010 |
[34] |
Happaney, K., Zelazo, P.D. and Stuss D.T. (2004) Development of Orbitofron-tal Function: Current Themes and Future Directions. Brain and Cognition, 55, 1-10. https://doi.org/10.1016/j.bandc.2004.01.001 |
[35] |
Yu, H., Meng, Y.-J., Li, X.-J., et al. (2019) Common and Distinct Patterns of Grey Matter Alterations in Borderline Personality Disorder and Bipolar Disorder: Voxel-Based Meta-Analysis. British Journal of Psy-chiatry, 215, 395-403. https://doi.org/10.1192/bjp.2019.44 |
[36] |
Rajkowska, G. (2000) Postmortem Studies in Mood Disorders Indicate Altered Num-bers of Neurons and Glial Cells. Biological Psychiatry, 48, 766-777. https://doi.org/10.1016/S0006-3223(00)00950-1 |
[37] |
Vita, A., De Peri, L. and Sacchetti, E. (2009) Gray Matter, White Matter, Brain and Intracranial Volumes in First-Episode Bipolar Disorder: A Meta-Analysis of Magnetic Resonance Imaging Studies. Bipolar Disorders, 11, 807-814. https://doi.org/10.1111/j.1399-5618.2009.00759.x |
[38] |
Nugent, A.C., Milham, M.P., Bain, E.E., et al. (2006) Cortical Abnormal-ities in Bipolar Disorder Investigated with MRI and Voxel-Based Morphometry. NeuroImage, 30, 485-497. https://doi.org/10.1016/j.neuroimage.2005.09.029 |
[39] |
Anticevic, A., Brumbaugh, M.S., Winkler, A.M., et al. (2013) Global Prefrontal and Fronto-Amygdala dysconnectivity in bipolar I disorder with Psychosis History. Biological Psychiatry, 73, 565-573. https://doi.org/10.1016/j.biopsych.2012.07.031 |
[40] |
Roberts, G., Lenroot, R., Overs, B., et al. (2022) Accelerated Cortical Thin-ning and Volume Reduction over Time in Young People at High Genetic Risk for Bipolar Disorder. Psychological Medicine, 52, 1344-1355. https://doi.org/10.1017/S0033291720003153 |
[41] |
Abé, C., Ching, C.R.K., Liberg, B., et al. (2022) Longitudinal Structural Brain Changes in Bipolar Disorder: A Multicenter Neuroimaging Study of 1232 Individuals by the ENIGMA Bipolar Disorder Working Group. Biological Psychiatry, 91, 582-592. https://doi.org/10.1016/j.biopsych.2021.09.008 |
[42] |
Soares, J.M., Marques, P., Alves, V. and Sousa, N. (2013) A Hitchhiker’s Guide to Diffusion Tensor Imaging. Frontiers in Neuroscience, 7, Article 31. https://doi.org/10.3389/fnins.2013.00031 |
[43] |
Smith, S.M., Jenkinson, M., Johansen-Berg, H., et al. (2006) Tract-Based Spatial Statistics: Voxelwise Analysis of Multi-Subject Diffusion Data. NeuroImage, 31, 1487-505. https://doi.org/10.1016/j.neuroimage.2006.02.024 |
[44] |
Sbardella, E., Tona, F., Petsas, N., et al. (2013) DTI Measurements in Multiple Sclerosis: Evaluation of Brain Damage and Clinical Implications. Multiple Sclerosis International, 2013, Article ID: 671730. https://doi.org/10.1155/2013/671730 |
[45] |
Ishida, T., Donishi, T., Iwatani, J., et al.(2017) Interhemispheric Disconnectivity in the Sensorimotor Network in Bipolar Disorder Revealed by Functional Connectivity and Diffusion Tensor Imaging Analysis. Heliyon, 3, e00335. https://doi.org/10.1016/j.heliyon.2017.e00335 |
[46] |
Benedetti, F., Absinta, M., Rocca, M.A., et al. (2011) Tract-Specific White Matter structural disruption in patients with bipolar disorder. Bipolar Disorders, 13, 414-424. https://doi.org/10.1111/j.1399-5618.2011.00938.x |
[47] |
Versace, A., Andreazza, A.C., Young, L.T., et al. (2014) Elevated Serum Measures of Lipid Peroxidation and Abnormal Prefrontal White Matter in Euthymic Bipolar Adults: Toward Peripheral Biomarkers of Bipolar Disorder. Molecular Psychiatry, 19, 200-208. https://doi.org/10.1038/mp.2012.188 |
[48] |
Lin, F., Weng, S., Xie, B., Wu, G. and Lei, H. (2011) Abnormal Frontal Cortex White Matter Connections in Bipolar Disorder: A DTI Tractography Study. Journal of Affective Disorders, 131, 299-306. https://doi.org/10.1016/j.jad.2010.12.018 |
[49] |
Emsell, L., Leemans, A., Langan, C., et al. (2013) Limbic and Callosal White Mat-ter Changes in Euthymic Bipolar I Disorder: An Advanced Diffusion Magnetic Resonance Imaging Tractography Study. Biological Psychiatry, 73, 194-201. https://doi.org/10.1016/j.biopsych.2012.09.023 |
[50] |
Versace, A., Almeida, J.R.C., Hassel, S., et al. (2008) Elevated Left and Reduced Right Orbitomedial Prefrontal Fractional Anisotropy in Adults with Bipolar Disorder Revealed by Tract-Based Spatial Statis-tics. Archives of General Psychiatry, 65, 1041-1052. https://doi.org/10.1001/archpsyc.65.9.1041 |
[51] |
Wessa, M., Houenou, J., Leboyer, M., et al. (2009) Microstructural White Matter Changes in Euthymic Bipolar Patients: A Whole-Brain Diffusion Tensor Im-aging Study. Bipolar Disorders, 11, 504-514. https://doi.org/10.1111/j.1399-5618.2009.00718.x |
[52] |
Debette, S. and Markus, H.S. (2010) The Clinical Importance of White Matter Hyperintensities on Brain Magnetic Resonance Imaging: Systematic Review and Meta-Analysis. BMJ, 341, c3666. https://doi.org/10.1136/bmj.c3666 |
[53] |
Vemuri, P., Lesnick, T.G., Przybelski, S.A., et al. (2018) Development of a Cerebrovas-cular Magnetic Resonance Imaging Biomarker For cognitiveAging. Annals of Neurology, 84, 705-716. https://doi.org/10.1002/ana.25346 |
[54] |
Liu, Q., Bhuiyan, M.I.H., Liu, R., et al. (2021) Attenuating Vascular Stenosis-Induced Astrogliosis Preserves White Matter Integrity and Cognitive Function. Journal of Neuroinflammation, 18, Article No. 187. https://doi.org/10.1186/s12974-021-02234-8 |
[55] |
宋筱蕾, 穆新暖, 于美霞, 等. 首发轻中度抑郁症患者治疗前后脑任务态功能磁共振研究[J]. 临床放射学杂志. 2019, 38(7): 1174-1179. |
[56] |
Victor, T.A., Furey, M.L., Fromm, S.J., et al. (2012) The Ex-tended Functional Neuroanatomy of Emotional Processing Biases for Masked Faces in Major Depressive Disorder. PLOS ONE, 7, e46439. https://doi.org/10.1371/journal.pone.0046439 |
[57] |
蔡溢, 李卫晖, 李则宣, 等. 抑郁症和双相抑郁患者情绪图片任务下脑功能磁共振成像研究[J]. 中华精神科杂志, 2016, 49(4): 202-209. |
[58] |
王工书, 任尊晓, 李丹丹, 等. 脑激活任务区分度的分析及应用研究[J]. 计算机工程与应用, 2020, 56(21): 272-278. |
[59] |
肖茜. 青少年双相障碍的脑结构和功能磁共振研究[D]: [博士学位论文]. 长沙: 中南大学, 2013. |
[60] |
Gupta, R., Sood, M., Sharma, U., R.,Bhargava, Jagannathan, N.R. and Chadda, R.K. (2022) Neurochemical Correlates of Cognitive Functions in Euthymic Patients with Bipolar Disorder: 1H-MRS Study. Asian Journal of Psy-chiatry, 78, Article ID: 103273. https://doi.org/10.1016/j.ajp.2022.103273 |
[61] |
Zovetti, N., Rossetti, M.G., Perlini, C., Brambilla, P. and Bellani, M. (2023) Brain Ageing and Neurodegeneration in Bipolar Disorder. Journal of Affective Disorders, 323, 171-175. https://doi.org/10.1016/j.jad.2022.11.066 |
[62] |
Fredericks, C., Kalmar, J. and Blumberg, H. (2006) The Role of the Ventral Pre-frontal Cortex in Mood Disorders. In: Zald, D. and Rauch, S., Eds., The Orbitofrontal Cortex, Oxford Academic, Oxford, 544-577. https://doi.org/10.1093/acprof:oso/9780198565741.003.0021 |
[63] |
Liu, T., Wang, Y., Zhong, S., et al. (2017) A Comparison of Neurometabolitesbetween Remitted Bipolar Disorder and Depressed Bipolar Disorder: A Proton Magnetic Resonance Spectroscopy Study. Journal of Affective Disorders, 211, 153-161. https://doi.org/10.1016/j.jad.2017.01.009 |
[64] |
Scotti-Muzzi, E., Um-la-Runge, K. and Soeiro-de-Souza, M.G. (2021) Anterior Cingulate Cortex Neurometabolitesin Bipolar Disorder are Influenced by Mood State and Medication: A Meta-Analysis of 1H-MRS Studies. European Neuropsychopharmacology, 47, 62-73. https://doi.org/10.1016/j.euroneuro.2021.01.096 |
[65] |
Öngür, D., Jensen, J.E., Prescot, A.P., et al. (2008) Abnormal Glutama-tergic Neurotransmission and Neuronal-Glial Interactions in Acute Mania. Biological Psychiatry, 64, 718-726. https://doi.org/10.1016/j.biopsych.2008.05.014 |
[66] |
Frye, M.A., Watzl, J., Banakar, S., et al. (2007) Increased Anterior Cingulate/Medial PREFRONTAL Cortical Glutamate and Creatine in Bipolar Depression. Neuropsychopharmacology, 32, 2490-2499. https://doi.org/10.1038/sj.npp.1301387 |
[67] |
Port, J.D., Unal, S.S., Mrazek, D.A., et al. (2008) Metabolic Alterations in Medica-tion-Free Patients with Bipolar Disorder: A 3T CSF-Corrected Magnetic Resonance Spectroscopic Imaging Study. Psychiatry Research: Neuroimaging, 162, 113-121. https://doi.org/10.1016/j.pscychresns.2007.08.004 |
[68] |
Jett, J.D., Bulin, S.E., Hatherall, L.C., et al. (2017) Deficits in Cognitive Flexibility Induced by Chronic Unpredictable Stress Are Associated with Impaired Glutamate Neurotrans-mission in the Rat Medial Prefrontal Cortex. Neuroscience, 346, 284-297. https://doi.org/10.1016/j.neuroscience.2017.01.017 |
[69] |
Buchanan, R.J., Gjini, K., Modur, P., et al. (2016) In Vivo Measurements of Limbic Glutamate and GABA Concentrations in Epileptic Patients during Affective and Cognitive Tasks: A Microdialysis Study. Hippocampus, 26, 683-689. https://doi.org/10.1002/hipo.22552 |
[70] |
Huber, R.S., Kondo, D.G., Shi, X.-F., et al. (2018) Relationship of Executive Function-ing Deficits to N-acetyl Aspartate (NAA) and Gamma-Aminobutyric Acid (GABA) in Youth with Bipolar Disorder. Journal of Affec-tive Disorders, 225, 71-78. https://doi.org/10.1016/j.jad.2017.07.052 |