[1] |
Stöckl, T. and Hillemacher, T. (2021) Verdacht auf Depression [Depression in Young Woman]. MMW-Fortschritte der Medizin, 63, 40-41. (In German) https://doi.org/10.1007/s15006-021-0175-2 |
[2] |
Lu, J., Xu, X., Huang, Y., Li, T., Ma, C., Xu, G., Yin, H., Xu, X., Ma, Y., Wang, L., Huang, Z., Yan, Y., Wang, B., Xiao, S., Zhou, L., Li, L., Zhang, Y., Chen, H., Zhang, T., Yan, J., Ding, H., Yu, Y., Kou, C., Shen, Z., Jiang, L., Wang, Z., Sun, X., Xu, Y., He, Y., Guo, W., Jiang, L., Li, S., Pan, W., Wu, Y., Li, G., Jia, F., Shi, J., Shen, Z. and Zhang, N. (2021) Prevalence of Depressive Dis-orders and Treatment in China: A Cross-Sectional Epidemiological Study. Lancet Psychiatry, 8, 981-990. https://doi.org/10.1016/S2215-0366(21)00251-0 |
[3] |
Kang, C. and Yang, J. (2022) Prevalence of Mental Disor-ders in China. Lancet Psychiatry, 9, 13. https://doi.org/10.1016/S2215-0366(21)00400-4 |
[4] |
Lim, G. (2021) Perinatal Depression. Current Opinion in Anaesthesiology, 34, 233-237. https://doi.org/10.1097/ACO.0000000000000998 |
[5] |
Swetlitz, N. (2021) Depression’s Problem with Men. AMA Journal of Ethics, 23, 586-589. https://doi.org/10.1001/amajethics.2021.586 |
[6] |
Leichsenring, F., Luyten, P., Abbass, A., Rabung, S. and Steinert, C. (2021) Treatment of Depression in Children and Adolescents. Lancet Psychiatry, 8, 96-97. https://doi.org/10.1016/S2215-0366(20)30492-2 |
[7] |
van den Berg, K.S., Wiersema, C., Hegeman, J.M., van den Brink, R.H.S., Rhebergen, D., Marijnissen, R.M. and Oude Voshaar, R.C. (2021) Clinical Characteristics of Late-Life Depression Predicting Mortality. Aging & Mental Health, 25, 476-483. https://doi.org/10.1080/13607863.2019.1699900 |
[8] |
Lopez, R., Barateau, L., Evangelista, E. and Dauvilliers, Y. (2017) Depression and Hypersomnia: A Complex Association. Sleep Medicine Clinics, 12, 395-405. https://doi.org/10.1016/j.jsmc.2017.03.016 |
[9] |
Kubon, J., Sokolov, A.N., Popp, R., Fallgatter, A.J. and Pavlova, M.A. (2021) Face Tuning in Depression. Cerebral Cortex, 31, 2574-2585. https://doi.org/10.1093/cercor/bhaa375 |
[10] |
Bhatt, S., Devadoss, T., Manjula, S.N. and Rajangam, J. (2021) 5-HT3 Receptor Antagonism: A Potential Therapeutic Approach for the Treatment of Depression and Other Disorders. Current Neuropharmacology, 19, 1545-1559. https://doi.org/10.2174/1570159X18666201015155816 |
[11] |
Spellman, T. and Liston, C. (2020) Toward Circuit Mechanisms of Pathophysiology in Depression. American Journal of Psychiatry, 177, 381-390. https://doi.org/10.1176/appi.ajp.2020.20030280 |
[12] |
Jesulola, E., Micalos, P. and Baguley, I.J. (2018) Under-standing the Pathophysiology of Depression: From Monoamines to the Neurogenesis Hypothesis Model—Are We There Yet? Behavioural Brain Research, 341, 79-90. https://doi.org/10.1016/j.bbr.2017.12.025 |
[13] |
Beurel, E., Toups, M. and Nemeroff, C.B. (2020) The Bidirectional Relationship of Depression and Inflammation: Double Trouble. Neuron, 107, 234-256. https://doi.org/10.1016/j.neuron.2020.06.002 |
[14] |
Halaris, A. (2019) Inflammation and Depression but Where Does the Inflammation Come from? Current Opinion in Psychiatry, 32, 422-428. https://doi.org/10.1097/YCO.0000000000000531 |
[15] |
Jia, X., Gao, Z. and Hu, H. (2021) Microglia in Depression: Current Perspectives. Science China Life Sciences, 64, 911-925. https://doi.org/10.1007/s11427-020-1815-6 |
[16] |
Deng, S.-L., Chen, J.-G. and Wang, F. (2020) Microglia: A Cen-tral Player in Depression. Current Medical Science, 40, 391-400. https://doi.org/10.1007/s11596-020-2193-1 |
[17] |
Peirce, J.M. and Alviña, K. (2019) The Role of Inflammation and the Gut Microbiome in Depression and Anxiety. Journal of Neuroscience Research, 97, 1223-1241. https://doi.org/10.1002/jnr.24476 |
[18] |
Trzeciak, P. and Herbet, M. (2021) Role of the Intestinal Microbiome, Intes-tinal Barrier and Psychobiotics in Depression. Nutrients, 13, Article No. 927. https://doi.org/10.3390/nu13030927 |
[19] |
Simpson, C.A., Diaz-Arteche, C., Eliby, D., Schwartz, O.S., Simmons, J.G. and Cowan, C.S.M. (2021) The Gut Microbiota in Anxiety and Depression—A Systematic Review. Clinical Psy-chology Review, 83, Article ID: 101943. https://doi.org/10.1016/j.cpr.2020.101943 |
[20] |
Cruz-Pereira, J.S., Rea, K., Nolan, Y.M., O’Leary, O.F., Dinan, T.G. and Cryan, J.F. (2020) Depression’s Unholy Trinity: Dysregulated Stress, Immunity, and the Microbiome. Annual Review of Psychology, 71, 49-78. https://doi.org/10.1146/annurev-psych-122216-011613 |
[21] |
Castrén, E. and Monteggia, L.M. (2021) Brain-Derived Neurotrophic Factor Signaling in Depression and Antidepressant Action. Biological Psychiatry, 90, 128-136. https://doi.org/10.1016/j.biopsych.2021.05.008 |
[22] |
Rahmani, M., Rahmani, F. and Rezaei, N. (2020) The Brain-Derived Neurotrophic Factor: Missing Link between Sleep Deprivation, Insomnia, and Depression. Neuro-chemical Research, 45, 221-231. https://doi.org/10.1007/s11064-019-02914-1 |
[23] |
Meng, F., Liu, J., Dai, J., Wu, M., Wang, W., Liu, C., Zhao, D., Wang, H., Zhang, J., Li, M. and Li, C. (2020) Brain-Derived Neurotrophic Factor in 5-HT Neurons Regulates Suscepti-bility to Depression-Related Behaviors Induced by Subchronic Unpredictable Stress. Journal of Psychiatric Research, 126, 55-66. https://doi.org/10.1016/j.jpsychires.2020.05.003 |
[24] |
Malhi, G.S. and Mann, J.J. (2018) Depression. Lancet, 392, 2299-2312. https://doi.org/10.1016/S0140-6736(18)31948-2 |
[25] |
Ferrari, F. and Villa, R.F. (2017) The Neurobiology of De-pression: an Integrated Overview from Biological Theories to Clinical Evidence. Molecular Neurobiology, 54, 4847-4865. https://doi.org/10.1007/s12035-016-0032-y |
[26] |
Bingham, K.S., Mulsant, B.H., Dawson, D.R., Banerjee, S. and Flint, A.J. (2021) Relationship of Hair Cortisol with History of Psychosis, Neuropsychological Performance and Func-tioning in Remitted Later-Life Major Depression. Neuropsychobiology, 80, 313-320. https://doi.org/10.1159/000512081 |
[27] |
Kinlein, S.A., Phillips, D.J., Keller, C.R. and Karatsoreos, I.N. (2019) Role of Corticosterone in Altered Neurobehavioral Responses to Acute Stress in a Model of Compromised Hypothalam-ic-Pituitary-Adrenal Axis Function. Psychoneuroendocrinology, 102, 248-255. https://doi.org/10.1016/j.psyneuen.2018.12.010 |
[28] |
Juruena, M.F., Gadelrab, R., Cleare, A.J. and Young, A.H. (2021) Epigenetics: A Missing Link between Early Life Stress and Depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 109, Article ID: 110231. https://doi.org/10.1016/j.pnpbp.2020.110231 |
[29] |
Lin, E. and Tsai, S.-J. (2019) Epigenetics and Depression: An Update. Psychiatry Investigation, 16, 654-661. https://doi.org/10.30773/pi.2019.07.17.2 |
[30] |
Park, C., Rosenblat, J.D., Brietzke, E., Pan, Z., Lee, Y., Cao, B., Zuckerman, H., Kalantarova, A. and McIntyre, R.S. (2019) Stress, Epigenetics and Depression: A Systematic Review. Neuroscience & Biobehavioral Reviews, 102, 139-152. https://doi.org/10.1016/j.neubiorev.2019.04.010 |
[31] |
Kverno, K.S. and Mangano, E. (2021) Treatment-Resistant Depression: Approaches to Treatment. Journal of Psychosocial Nursing and Mental Health Services, 59, 7-11. https://doi.org/10.3928/02793695-20210816-01 |
[32] |
Marom, A. and Rosca, P. (2021) [Esketamine for Treatment Resistant Depression: Research and Risk Management]. Harefuah, 160, 372-376.( In Hebrew) |
[33] |
Sabella, D. (2018) Antidepressant Medications. American Journal of Nursing, 118, 52-59. https://doi.org/10.1097/01.NAJ.0000544978.56301.f6 |
[34] |
Hebel, T., Schecklmann, M. and Langguth, B. (2020) Transcranial Magnetic Stimulation in the Treatment of Depression during Pregnancy: A Review. Archives of Women’s Mental Health, 23, 469-478. https://doi.org/10.1007/s00737-019-01004-z |
[35] |
Zorn, A., Linn, S., Jenkinson, M., Neher, J.O., Safranek, S. and Kelsberg, G. (2021) Is Ketamine Effective and Safe for Treatment-Resistant Depression? The Journal of Family Practice, 70, E1-E3. https://doi.org/10.12788/jfp.0176 |
[36] |
袁霞红, 刘林. 肠道菌群调节抑郁症机制及中医药防治研究进展[J]. 中华中医药学刊, 2022, 40(9): 167-170. http://kns.cnki.net/kcms/detail/21.1546.R.20220304.1252.018.html |
[37] |
宁婕, 王新, 马柯. 经典名方治疗抑郁症的临床研究现状与规律[J]. 中华中医药学刊, 2022, 40(8): 108-111. http://kns.cnki.net/kcms/detail/21.1546.R.20220106.1754.004.html |
[38] |
亓新庆, 亓雪梅, 刘甜梦, 粟栗. 从虚论治抑郁症方药研究进展[J]. 中国实验方剂学杂志, 2021, 27(17): 217-226. https://doi.org/10.13422/j.cnki.syfjx.20211116 |
[39] |
Ren, L. and Chen, G. (2017) Rapid Antidepressant Effects of Yueju: A New Look at the Function and Mechanism of an Old Herbal Medicine. Journal of Ethnopharmacology, 203, 226-232. https://doi.org/10.1016/j.jep.2017.03.042 |
[40] |
Zhang, Y., Fang, Y.-C., Cui, L.-X., Jiang, Y.-T., Luo, Y.-S., Zhang, W., Yu, D.-X., Wen, J. and Zhou, T.-T. (2022) Zhi-Zi-Chi Decoction Reverses Depressive Behaviors in CUMS Rats by Reducing Oxidative Stress Injury Via Regulating GSH/GSSG Pathway. Frontiers in Pharmacology, 13, Article 887890. https://doi.org/10.3389/fphar.2022.887890 |
[41] |
Qu, S., Liu, M., Cao, C., Wei, C., Meng, X.-E., Lou, Q., Wang, B., Li, X., She, Y., Wang, Q., Song, Z., Han, Z., Zhu, Y., Huang, F. and Duan, J.-A. (2021) Chinese Medicine Formula Kai-Xin-San Ameliorates Neuronal Inflammation of CUMS-Induced Depression-Like Mice and Reduces the Expres-sions of Inflammatory Factors via Inhibiting TLR4/ IKK/NF-κB Pathways on BV2 Cells. Frontiers in Pharmacology, 12, Article 626949. https://doi.org/10.3389/fphar.2021.626949 |
[42] |
Zhang, S., Lu, Y., Chen, W., Shi, W., Zhao, Q., Zhao, J. and Li, L. (2021) Network Pharmacology and Experimental Evidence: PI3K/AKT Signaling Pathway Is Involved in the Antide-pressive Roles of Chaihu Shugan San. Drug Design, Development and Therapy, 15, 3425-3441. https://doi.org/10.2147/DDDT.S315060 |
[43] |
Chen, G., Feng, P., Wang, S., Ding, X., Xiong, J., Wu, J., Wang, L., Chen, W., Chen, G., Han, M., Zou, T., Li, L. and Du, H. (2020) An Herbal Formulation of Jiawei Xiaoyao for the Treatment of Functional Dyspepsia: A Multicenter, Randomized, Placebo-Controlled, Clinical Trial. Clinical and Trans-lational Gastroenterology, 11, e00241. https://doi.org/10.14309/ctg.0000000000000241 |
[44] |
Wang, M., Huang, W., Gao, T., Zhao, X. and Lv, Z. (2018) Effects of Xiao Yao San on Interferon-α-Induced Depression in Mice. Brain Research Bulletin, 139, 197-202. https://doi.org/10.1016/j.brainresbull.2017.12.001 |
[45] |
Zhu, H.-Z., Liang, Y.-D., Ma, Q.-Y., Hao, W.-Z., Li, X.-J., Wu, M.-S., Deng, L.-J., Li, Y.-M. and Chen, J.-X. (2019) Xiaoyaosan Improves Depressive-Like Behavior in Rats with Chronic Immobilization Stress through Modulation of the Gut Microbiota. Biomedicine & Pharmacotherapy, 112, Article ID: 108621. https://doi.org/10.1016/j.biopha.2019.108621 |
[46] |
Lv, M., Wang, Y., Qu, P., Li, S., Yu, Z., Qin, X. and Liu, X. (2021) A Combination of Cecum Microbiome and Metabolome in CUMS Depressed Rats Reveals the Antidepressant Mechanism of Traditional Chinese Medicines: A Case Study of Xiaoyaosan. Journal of Ethnopharmacology, 276, Arti-cle ID: 114167. https://doi.org/10.1016/j.jep.2021.114167 |
[47] |
Xia, Z., Zhang, C., Du, Y., Huang, W., Xing, Z., Cao, H., Nie, K., Wang, Y., Xiong, X. and Yang, B. (2019) The Effect of Traditional Chinese Medicine Zhike-Houpu Herbal Pair on De-pressive Behaviors and Hippocampal Serotonin 1A Receptors in Rats after Chronic Unpredictable Mild Stress. Psycho-somatic Medicine, 81, 100-109. https://doi.org/10.1097/PSY.0000000000000639 |
[48] |
赵洪庆, 刘检, 孟盼, 杨蕙, 蔺晓源, 龙红萍, 余曦明, 王宇红. 百合地黄汤对焦虑性抑郁症模型大鼠海马突触可塑性的影响[J]. 中国中药杂志, 2021, 46(5): 1205-1210. https://doi.org/10.19540/j.cnki.cjcmm.20201221.401 |
[49] |
Xue, X., Pan, J., Zhang, H., Lu, Y., Mao, Q. and Ma, K. (2022) Baihe Dihuang (Lilium Henryi Baker and Rehmannia Glutinosa) Decoction Attenuates Somatostatin Interneurons Deficits in Prefrontal Cortex of Depression via miRNA-144-3p Mediated GABA Synthesis and Release. Journal of Ethnopharmacology, 292, Article ID: 115218. https://doi.org/10.1016/j.jep.2022.115218 |
[50] |
Zhang, L., Li, J., Chen, Q., Di, L. and Li, N. (2021) Erxian Decoc-tion, a Famous Chinese Medicine Formula, Ameliorate Depression-Like Behavior in Perimenopausal Mice. Endocrine, Metabolic & Immune Disorders-Drug Targets, 21, 2203-2212. https://doi.org/10.2174/1871530321666210618095856 |
[51] |
Jing, W., Song, S., Sun, H., Chen, Y., Zhao, Q., Zhang, Y., Dai, G. and Ju, W. (2019) Mahuang-Fuzi-Xixin Decoction Reverses Depression-Like Behavior in LPS-Induced Mice by Regulating NLRP3 Inflammasome and Neurogenesis. Neural Plasticity, 2019, Article ID: 1571392. https://doi.org/10.1155/2019/1571392 |
[52] |
Wang, X., Chen, J., Zhang, H., Huang, Z., Zou, Z., Chen, Y., Sheng, L., Xue, W., Tang, J., Wu, H., Liu, H. and Chen, G. (2019) Immediate and Persistent Antidepressant-Like Effects of Chaihu-Jia-Longgu-Muli-Tang Are Associated with Instantly Up-Regulated BDNF in the Hippocampus of Mice. Bi-oscience Reports, 39, Article ID: BSR20181539. https://doi.org/10.1042/BSR20181539 |
[53] |
Jiao, Z., Zhao, H., Huang, W., Liang, R., Liu, Y., Li, Z., Li, L., Xu, Y., Gao, S., Gao, S., Li, Y. and Yu, C. (2021) An Investigation of the Antidepressant-Like Effect of Jiaotaiwan in Rats by Nontargeted Metabolomics Based on Ultra-High-Performance Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry. Journal of Separation Science, 44, 645-655. https://doi.org/10.1002/jssc.202000576 |
[54] |
Su, Z., Ruan, J., Liu, X., Zheng, H., Ruan, J., Lu, Y., Cheng, B., Wu, F., Wu, J., Liu, X., Song, F., Chen, Z., Song, H., Liang, Y. and Guo, H. (2021) Combining 1H-NMR-Based Metabonomics and Network Pharmacology to Dissect the Mecha-nism of Antidepression Effect of Milletia speciosa Champ on Mouse with Chronic Unpredictable Mild Stress-Induced Depression. Journal of Pharmacy and Pharmacology, 73, 881-892. https://doi.org/10.1093/jpp/rgaa010 |
[55] |
Li, R., Wang, Z.-M., Wang, Y., Dong, X., Zhang, L.-H., Wang, T., Zhu, Y., Gao, X.-M., Wu, H.-H. and Xu, Y.-T. (2021) An-tidepressant Activities and Regulative Effects on Serotonin Transporter of Nardostachys jatamansi DC. Journal of Eth-nopharmacology, 268, Article ID: 113601. https://doi.org/10.1016/j.jep.2020.113601 |
[56] |
Wang, X.-L., Feng, S.-T., Wang, Y.-T., Chen, N.-H., Wang, Z.-Z. and Zhang, Y. (2021) Paeoniflorin: A Neuroprotective Monoterpenoid Glycoside with Promising Anti-Depressive Properties. Phytomedicine, 90, Article ID: 153669. https://doi.org/10.1016/j.phymed.2021.153669 |
[57] |
Lee, S. and Rhee, D.-K. (2017) Effects of Ginseng on Stress-Related Depression, Anxiety, and the Hypothalamic-Pituitary-Adrenal Axis. Journal of Ginseng Research, 41, 589-594. https://doi.org/10.1016/j.jgr.2017.01.010 |
[58] |
Lu, J., Li, W., Gao, T., Wang, S., Fu, C. and Wang, S. (2022) The Association Study of Chemical Compositions and Their Pharmacological Effects of Cyperi Rhizoma (Xiangfu), a Potential Traditional Chinese Medicine for Treating Depression. Journal of Ethnopharmacology, 287, Arti-cle ID: 114962. https://doi.org/10.1016/j.jep.2021.114962 |
[59] |
Ito, N., Sasaki, K., Hirose, E., Nagai, T., Isoda, H. and Odaguchi, H. (2022) Preventive Effect of a Kampo Medicine, Kososan, on Recurrent Depression in a Mouse Model of Repeated Social Defeat Stress. Gene, 806, Article ID: 145920. https://doi.org/10.1016/j.gene.2021.145920 |
[60] |
Li, G.G., Lu, Y., He, P., Zhang, S.Y., Cheng, Y.T., Zhang, S.D., Pei, L. and Li, G. (2021) Target Prediction and Activity Verification for the Antidepressant Action of Huangqin (Radix Scutellariae Baicalensis). Journal of Traditional Chinese Medicine, 41, 845-852. https://doi.org/10.19852/j.cnki.jtcm.2021.06.003 |
[61] |
Lin, H.-Y., Tsai, J.-C., Wu, L.-Y. and Peng, W.-H. (2020) Reveals of New Candidate Active Components in Hemerocallis Radix and Its Anti-Depression Action of Mechanism Based on Network Pharmacology Approach. International Journal of Molecular Sciences, 21, Article No. 1868. https://doi.org/10.3390/ijms21051868 |
[62] |
Fu, X., Jiao, J., Qin, T., Yu, J., Fu, Q., Deng, X., Ma, S. and Ma, Z. (2021) A New Perspective on Ameliorating Depression-Like Behaviors: Suppressing Neuroinflammation by Upregulat-ing PGC-1α. Neurotoxicity Research, 39, 872-885. https://doi.org/10.1007/s12640-020-00292-z |
[63] |
Shen, F., Song, Z., Xie, P., Li, L., Wang, B., Peng, D. and Zhu, G. (2021) Polygonatum sibiricum Polysaccharide Prevents De-pression-Like Behaviors by Reducing Oxidative Stress, Inflammation, and Cellular and Synaptic Damage. Journal of Ethnopharmacology, 275, Article ID: 114164. https://doi.org/10.1016/j.jep.2021.114164 |
[64] |
Fu, C., Shuang, Q., Liu, Y., Zeng, L. and Su, W. (2022) Baihe Extracts Reduce the Activation and Apoptosis of Microglia in the Hippocam-pus of Mice with Depression-like Behaviors by Downregulating MYC. ACS Chemical Neuroscience, 13, 587-598. https://doi.org/10.1021/acschemneuro.1c00439 |
[65] |
Zhang, L., Previn, R., Lu, L., Liao, R.-F., Jin, Y. and Wang, R.-K. (2018) Crocin, a Natural Product Attenuates Lipopolysaccharide-Induced Anxiety and Depressive-Like Behaviors Through Suppressing NF-κB and NLRP3 Signaling Pathway. Brain Research Bulletin, 142, 352-359. https://doi.org/10.1016/j.brainresbull.2018.08.021 |
[66] |
Wang, J.-M., Pei, L.-X., Zhang, Y.-Y., Cheng, Y.-X., Niu, C.-L., Cui, Y., Feng, W.-S. and Wang, G.-F. (2018) Ethanol Extract of Rehmannia glutinosa Exerts Antidepressant-Like Effects on a Rat Chronic Unpredictable Mild Stress Model by Involving Monoamines and BDNF. Metabolic Brain Dis-ease, 33, 885-892. https://doi.org/10.1007/s11011-018-0202-x |
[67] |
Qiao, Y.-L., Zhou, J.-J., Liang, J.-H., Deng, X.-P., Zhang, Z.-J., Huang, H.-L., Li, S., Dai, S.-F., Liu, C.-Q., Luan, Z.-L., Yu, Z.-L., Sun, C.-P. and Ma, X.-C. (2021) Uncaria rhyncho-phylla Ameliorates Unpredictable Chronic Mild Stress-Induced Depression in Mice via Activating 5-HT1A Receptor: In-sights from Transcriptomics. Phytomedicine, 81, Article ID: 153436. https://doi.org/10.1016/j.phymed.2020.153436 |
[68] |
Tan, L., Yang, Y., Peng, J., Zhang, Y., Wu, B., He, B., Jia, Y. and Yan, T. (2022) Schisandra chinensis (Turcz.) Baill. Essential Oil Exhibits Antidepressant-Like Effects and against Brain Oxidative Stress through Nrf2/HO-1 Pathway Activation. Metabolic Brain Disease, 37, 2261-2275. https://doi.org/10.1007/s11011-022-01019-z |
[69] |
Liu, T., Zhou, N., Xu, R., Cao, Y., Zhang, Y., Liu, Z., Zheng, X. and Feng, W. (2020) A Metabolomic Study on the Anti-Depressive Effects of Two Active Components from Chrysan-themum morifolium. Artificial Cells, Nanomedicine, and Biotechnology, 48, 718-727. https://doi.org/10.1080/21691401.2020.1774597 |
[70] |
Zhang, B., Li, Y., Liu, M., Duan, X.-H., Hu, K.-L., Li, L.-N., Yu, X. and Chang, H.-S. (2020) Antidepressant-Like Mechanism of Honokiol in a Rodent Model of Corti-costerone-Induced Depression. Journal of Integrative Neuroscience, 19, 459-467. https://doi.org/10.31083/j.jin.2020.03.172 |
[71] |
Zhang, B., Wang, P.-P., Hu, K.-L., Li, L.-N., Yu, X., Lu, Y. and Chang, H.-S. (2019) Antidepressant-Like Effect and Mechanism of Action of Honokiol on the Mouse Lipopolysaccha-ride (LPS) Depression Model. Molecules, 24, Article No. 2035. https://doi.org/10.3390/molecules24112035 |
[72] |
Cheng, J., Chen, M., Wan, H.-Q., Chen, X.-Q., Li, C.-F., Zhu, J.-X., Liu, Q., Xu, G.-H. and Yi, L.-T. (2021) Paeoniflorin Exerts Antidepressant-Like Effects through Enhancing Neu-ronal FGF-2 by Microglial Inactivation. Journal of Ethnopharmacology, 274, Article ID: 114046. https://doi.org/10.1016/j.jep.2021.114046 |
[73] |
Ruan, J., Liu, L., Shan, X., Xia, B. and Fu, Q. (2019) An-ti-Depressant Effects of Oil from Fructus Gardeniae via PKA-CREB-BDNF Signaling. Bioscience Reports, 39, Article ID: BSR20190141. https://doi.org/10.1042/BSR20190141 |
[74] |
Chen, Y.-Y., Liu, Q.-P., An, P., Jia, M., Luan, X., Tang, J.-Y. and Zhang, H. (2022) Ginsenoside Rd: A Promising Natural Neuroprotective Agent. Phytomedicine, 95, Article ID: 153883. https://doi.org/10.1016/j.phymed.2021.153883 |
[75] |
Lou, T., Huang, Q., Su, H., Zhao, D. and Li, X. (2021) Tar-geting Sirtuin 1 Signaling Pathway by Ginsenosides. Journal of Ethnopharmacology, 268, Article ID: 113657. https://doi.org/10.1016/j.jep.2020.113657 |
[76] |
Lou, Y.-X., Wang, Z.-Z., Xia, C.-Y., Mou, Z., Ren, Q., Liu, D.-D., Zhang, X. and Chen, N.-H. (2020) The Protective Effect of Ginsenoside Rg1 on Depression May Benefit from the Gap Junction Function in Hippocampal Astrocytes. European Journal of Pharmacology, 882, Article ID: 173309. https://doi.org/10.1016/j.ejphar.2020.173309 |
[77] |
Cao, L.-H., Qiao, J.-Y., Huang, H.-Y., Fang, X.-Y., Zhang, R., Miao, M.-S. and Li, X.-M. (2019) PI3K-AKT Signaling Activation and Icariin: The Potential Effects on the Perimeno-pausal Depression-Like Rat Model. Molecules, 24, Article No. 3700. https://doi.org/10.3390/molecules24203700 |
[78] |
Li, Z., Xu, H., Xu, Y., Lu, G., Peng, Q., Chen, J., Bi, R., Li, J., Chen, S., Li, H., Jin, H. and Hu, B. (2021) Morinda Officinalis Oligosaccharides Alleviate Depressive-Like Behaviors in Post-Stroke Rats via Suppressing NLRP3 Inflammasome to Inhibit Hippocampal Inflammation. CNS Neuroscience & Therapeutics, 27, 1570-1586. https://doi.org/10.1111/cns.13732 |
[79] |
Yang, S.-J., Song, Z.-J., Wang, X.-C., Zhang, Z.-R., Wu, S.-B. and Zhu, G.-Q. (2019) Curculigoside Facilitates Fear Extinction and Prevents Depression-Like Behaviors in a Mouse Learned Helplessness Model through Increasing Hippocampal BDNF. Acta Pharmacologica Sinica, 40, 1269-1278. https://doi.org/10.1038/s41401-019-0238-4 |
[80] |
Dong, S.-Q., Zhang, Q.-P., Zhu, J.-X., Chen, M., Li, C.-F., Liu, Q., Geng, D. and Yi, L.-T. (2018) Gypenosides Reverses Depressive Behavior via Inhibiting Hippocampal Neuroin-flammation. Biomedicine & Pharmacotherapy, 106, 1153-1160. https://doi.org/10.1016/j.biopha.2018.07.040 |
[81] |
Chen, X.-Q., Chen, S.-J., Liang, W.-N., Wang, M., Li, C.-F., Wang, S.-S., Dong, S.-Q., Yi, L.-T. and Li, C.-D. (2018) Saikosaponin A Attenuates Perimenopausal Depression-Like Symptoms by Chronic Unpredictable Mild Stress. Neuroscience Letters, 662, 283-289. https://doi.org/10.1016/j.neulet.2017.09.046 |
[82] |
Zhang, R., Ma, Z., Liu, K., Li, Y., Liu, D., Xu, L., Deng, X., Qu, R., Ma, Z. and Ma, S. (2019) Baicalin Exerts Antidepressant Effects through Akt/FOXG1 Pathway Promoting Neuronal Differentiation and Survival. Life Sciences, 221, 241-248. https://doi.org/10.1016/j.lfs.2019.02.033 |
[83] |
Zhang, C.-Y.-Y., Zeng, M.-J., Zhou, L.-P., Li, Y.-Q., Zhao, F., Shang, Z.-Y., Deng, X.-Y., Ma, Z.-Q., Fu, Q., Ma, S.-P. and Qu, R. (2018) Baicalin Exerts Neuroprotective Effects via Inhibiting Activation of GSK3β/NF-κB/NLRP3 Signal Path-way in a Rat Model of Depression. International Immunopharmacology, 64, 175-182. https://doi.org/10.1016/j.intimp.2018.09.001 |
[84] |
Lu, Y., Sun, G., Yang, F., Guan, Z., Zhang, Z., Zhao, J., Liu, Y., Chu, L. and Pei, L. (2019) Baicalin Regulates Depression Behavior in Mice Exposed to Chronic Mild Stress via the Rac/LIMK/Cofilin Pathway. Biomedicine & Pharmacotherapy, 116, Article ID: 109054. https://doi.org/10.1016/j.biopha.2019.109054 |
[85] |
Chen, M., Zhang, Q.-P., Zhu, J.-X., Cheng, J., Liu, Q., Xu, G.-H., Li, C.-F. and Yi, L.-T. (2020) Involvement of FGF-2 Modulation in the Antidepressant-Like Effects of Liquiritin in Mice. European Journal of Pharmacology, 881, Article ID: 173297. https://doi.org/10.1016/j.ejphar.2020.173297 |
[86] |
Ramaholimihaso, T., Bouazzaoui, F. and Kaladjian, A. (2020) Curcumin in Depression: Potential Mechanisms of Action and Current Evidence—A Narrative Review. Frontiers in Psychiatry, 11, Article ID: 572533. https://doi.org/10.3389/fpsyt.2020.572533 |
[87] |
Chen, Z., Gu, J., Lin, S., Xu, Z., Xu, H., Zhao, J., Feng, P., Tao, Y., Chen, S. and Wang, P. (2023) Saffron Essential Oil Ameliorates CUMS-Induced Depression-Like Behavior in Mice via the MAPK-CREB1-BDNF Signaling Pathway. Journal of Ethnopharmacology, 300, 115719. https://doi.org/10.1016/j.jep.2022.115719 |
[88] |
Zhang, J.-H., Yang, H.-Z., Su, H., Song, J., Bai, Y., Deng, L., Feng, C.-P., Guo, H.-X., Wang, Y., Gao, X., Gu, Y., Zhen, Z. and Lu, Y. (2021) Berberine and Ginsenoside Rb1 Ameliorate Depression-Like Behavior in Diabetic Rats. The American Journal of Chinese Medicine, 49, 1195-1213. https://doi.org/10.1142/S0192415X21500579 |
[89] |
Wang, Q.-S., Yan, K., Li, K.-D., Gao, L.-N., Wang, X., Liu, H., Zhang, Z., Li, K. and Cui, Y.-L. (2021) Targeting Hippocampal Phospholipid and Tryptophan Metabolism for Antide-pressant-Like Effects of Albiflorin. Phytomedicine, 92, Article ID: 153735. https://doi.org/10.1016/j.phymed.2021.153735 |
[90] |
Lin, J., Song, Z., Chen, X., Zhao, R., Chen, J., Chen, H., Yang, X. and Wu, Z. (2019) Trans-Cinnamaldehyde Shows Anti-Depression Effect in the Forced Swimming Test and Possible Involvement of the Endocannabinoid System. Biochemical and Biophysical Research Communications, 518, 351-356. https://doi.org/10.1016/j.bbrc.2019.08.061 |
[91] |
Liu, Z., Zou, Y., He, M., Yang, P., Qu, X. and Xu, L. (2022) Hy-droxysafflor Yellow A Can Improve Depressive Behavior by Inhibiting Hippocampal Inflammation and Oxidative Stress through Regulating HPA Axis. Journal of Biosciences, 47, Article No. 7. https://doi.org/10.1007/s12038-021-00246-3 |
[92] |
Xu, L., Su, J., Guo, L., Wang, S., Deng, X. and Ma, S. (2019) Modulation of LPA1 Receptor-Mediated Neuronal Apoptosis by Saikosaponin-d: A Target Involved in Depression. Neuropharmacology, 155, 150-161. https://doi.org/10.1016/j.neuropharm.2019.05.027 |
[93] |
Ye, T., Meng, X., Wang, R., Zhang, C., He, S., Sun, G. and Sun, X. (2018) Gastrodin Alleviates Cognitive Dysfunction and Depressive-Like Behaviors by Inhibiting ER Stress and NLRP3 Inflammasome Activation in db/db Mice. International Journal of Molecular Sciences, 19, Article No. 3977. https://doi.org/10.3390/ijms19123977 |
[94] |
Feng, R., He, M.-C., Li, Q., Liang, X.-Q., Tang, D.-Z., Zhang, J.-L., Liu, S.-F., Lin, F.-H. and Zhang, Y. (2020) Phenol Glycosides Extract of Fructus Ligustri Lucidi Attenuated Depres-sive-Like Behaviors by Suppressing Neuroinflammation in Hypothalamus of Mice. Phytotherapy Research, 34, 3273-3286. https://doi.org/10.1002/ptr.6777 |
[95] |
He, M.-C., Shi, Z., Qin, M., Sha, N.-N., Li, Y., Liao, D.-F., Lin, F.-H., Shu, B., Sun, Y.-L., Yuan, T.-F., Wang, Y.-J. and Zhang, Y. (2020) Muscone Ameliorates LPS-Induced Depres-sive-Like Behaviors and Inhibits Neuroinflammation in Prefrontal Cortex of Mice. The American Journal of Chinese Medicine, 48, 559-577. https://doi.org/10.1142/S0192415X20500287 |
[96] |
Wang, A.-R., Mi, L.-F., Zhang, Z.-L., Hu, M.-Z., Zhao, Z.-Y., Liu, B., Li, Y.-B. and Zheng, S. (2021) Saikosaponin A Improved Depression-Like Behavior and Inhibited Hippocampal Neuronal Apoptosis after Cerebral Ischemia through P-CREB/BDNF Pathway. Behavioural Brain Research, 403, Arti-cle ID: 113138. https://doi.org/10.1016/j.bbr.2021.113138 |
[97] |
Zhang, J., Yi, S., Li, Y., Xiao, C., Liu, C., Jiang, W., Yang, C. and Zhou, T. (2020) The Antidepressant Effects of Asperosaponin VI Are Mediated by the Suppression of Microglial Acti-vation and Reduction of TLR4/NF-κB-Induced IDO Expression. Psychopharmacology, 237, 2531-2545. https://doi.org/10.1007/s00213-020-05553-5 |
[98] |
Zhang, L., Tang, M., Xie, X., Zhao, Q., Hu, N., He, H., Liu, G., Huang, S., Peng, C., Xiao, Y. and You, Z. (2021) Ginsenoside Rb1 Induces a Pro-Neurogenic Microglial Phenotype via PPARγ Activation in Male Mice Exposed to Chronic Mild Stress. Journal of Neuroinflammation, 18, Article No. 171. https://doi.org/10.1186/s12974-021-02185-0 |
[99] |
Fan, L., Peng, Y., Wang, J., Ma, P., Zhao, L. and Li, X. (2021) Total Glycosides from Stems of Cistanche tubulosa Alleviate Depression-Like Behaviors: Bidirectional Interaction of the Phytochemicals and Gut Microbiota. Phytomedicine, 83, Article ID: 153471. https://doi.org/10.1016/j.phymed.2021.153471 |