¨,bius形式MO¨,bius Geometry,Hypersurface,Quasi-Parallel,MO¨,bius Second Fundamental Form,MO¨,bius Form"> 球空间中具有拟平行第二基本形式的超曲面 - beplay安卓登录
球空间中具有拟平行第二基本形式的超曲面
Hypersurfaces with Quasi-Parallel SecondBasic Form in Spherical Space
DOI:10.12677/PM.2023.134112,PDF,HTML,下载: 277浏览: 1,685
作者:苏 峰:云南师范大学数学学院,云南 昆明
关键词:几何超曲面拟平行第二基本形式MO¨bius形式MO¨bius GeometryHypersurfaceQuasi-ParallelMO¨bius Second Fundamental FormMO¨bius Form
摘要:设x : M n→ S n+1为黎曼流形到单位球空间中等距浸入, g和B分别为x的莫比乌斯度量和莫比乌斯第二基本形式, R 为g诱导的曲率张量. 本文研究满足条件RB = 0的超曲面, 获得了几个初步的结果.
Abstract:Let x : M n→ S n+1be isometri immersion of Riemannian manifold into unit sphere space, and g and B be Mobius metric and Mobius second fundamental form of x respectively R is a curvature tensor induced by g. In this paper, we study the hypersurface operator satisfying the condition RB = 0, and obtain some preliminary results.
文章引用:苏峰. 球空间中具有拟平行第二基本形式的超曲面[J]. 理论数学, 2023, 13(4): 1062-1072. https://doi.org/10.12677/PM.2023.134112

参考文献

[1] Wang, C.P. (1998) Moebius Geometry of Submanifolds in sn. Manuscripta Mathematica, 96, 517-534.
https://doi.org/10.1007/s002290050080
[2] Guo, Z., Fang, J.B. and Lin, L.M. (2011) Hypersurfaces with Isotropic Blaschke Tensor. Journal of the Mathematical Society of Japan, 63, 1155-1186.
https://doi.org/10.2969/jmsj/06341155
[3] Hu, Z.J. and Li, H.Z. (2004) Classification of Hypersurfaces with Parallel Mobius Second Fundamental Form in Sn+1. Science China-Mathematics, 47, 417-430.

为你推荐



Baidu
map