1. 引言
配电网是指从输电网或地区发电厂接受电能,通过配电设施就地分配或按电压逐级分配给各类用户的电力网。是由架空线路、电缆、杆塔、配电变压器、隔离开关、无功补偿器及一些附属设施等组成的,在电力网中起重要分配电能作用的网络。配电网直接面向用户,是保证供电质量、提高电网运行效率、创新用户服务的关键环节。在我国,由于历史的原因,配电网投资相对不足,自动化程度比较低,在供电质量方面与国际先进水平还有一定的差距。目前电力用户遭受的停电时间,95%以上是由于配电系统原因造成的(扣除发电不足的原因);配电网是造成电能质量恶化的主要因素;电力系统的损耗有近一半产生在配电网;分布式电源(DG)接入对电网的影响主要是对配电网的影响;与用户互动、进行需求侧管理的着眼点也在配电网。因此,加强对于配电网的研究,提高配电网的供电质量,是实现人民安居乐业、经济发展、生活富裕的重要保证。本文将针对配电网的故障自愈构建有效的数学模型进行量化分析。
配电网的自愈算法大体可分为3类:数学规划法、人工智能算法和启发式搜索算法。景皓等 [1] 基于主从博弈理论建立了主动配电网故障恢复模型,并设置多种情形的故障恢复场景验证了所建立模型的有效性。陈春等 [2] 提出一种基于网络拓扑有向遍历的配电网故障恢复方法,该方法较主流故障恢复算法耗时更少且开关动作次数更少。刘刚等 [3] 基于对光伏发电系统及风力发电系统的有功出力进行合理建模,建立以故障失电负荷恢复量最大为目标函数,最终建立含DG的故障恢复优化模型。汤旻安等 [4] 针对含分布式电源的配电网故障恢复问题,提出了基于启发式规则与AHP-CRITIC算法的配电网故障恢复策略。马天祥等 [5] 针对含分布式风力和光伏发电并网的主动配电网故障恢复问题,采用不确定二层规划理论建立计及新能源出力不确定性的主动配电网故障恢复模型。刘继栋等 [6] 提出了基于十进制编码的差分进化算法,解决了二进制编码产生大量不可行解的问题。黄焯麒等 [7] 对于多目标的故障恢复,提出了基于二次插值粒子群算法的双阶段策略。本文提出了基于十进制编码的分层量子粒子群算法,改进的粒子群算法比起普通的智能算法能够更准确地收敛到全局最优解,能够有效降低配电网的网损。
2. 配电网故障恢复模型
2.1. 目标函数
配电网故障恢复的目标函数选取一般有网损大小、负荷均衡、电压偏移、电压可靠性和开关动作次数等,本文选取网损大小、电压偏移两方面建立配电网的故障恢复目标函数,目标函数如式(1)所示:
(1)
其中:
为总损失负荷,
为电压偏移量;
为可以人为设定的权重系数,优先等级根据电网的实际供电目标恢复等级来确定。m为网络节点数,
为节点j的实际电压,
为节点j的额定电压;
为总失电区负荷量;
则表示第i个负荷的负荷量。
2.2. 约束条件
本文所采用的智能配电网故障恢复除了需要满足已经设定的恢复目标外,还需满足一定的约束条件,其中包括:
1) 电压约束:
(2)
其中
为第i个节点的电压,
为第i个节点电压的最大有效值,
为第i个节点的最小有效值。
2) 潮流计算方程约束:
(3)
其中
和
分别为系统和DG共同输入节点i的有功功率和无功功率;
和
分别为节点i处负荷的有功功率和无功功率;
和
分别为节点i、j的电压值;
、
分别为节点i和节点j之间的电导与电纳;
为节点i与j的相角差。
3) 支路电流约束:
(4)
其中
为支路i允许流过的最大电流。
2.3. 改进的量子粒子群算法
2.3.1. 算法原理
传统的粒子群算法 [8] 虽然速度快,鲁棒性高,但精度较低,且容易局部收敛。于是孙俊等人提出量子粒子群算法(Quantum Particle Swarm Optimization, QPSO) [9] [10] ,用于解决传统粒子群算法的缺陷。
量子粒子群算法的更新公式为:
(5)
(6)
(7)
式中,
表示解空间中粒子最优位置的平均值,
为粒子i的最优位置,
为群体最优粒子位置,D为维数,d为第d维分量,
为第i个粒子位置参数。
表示收缩扩张系数,一般按下式取值:
(8)
t为当前迭代次数,max为最大迭代次数。
2.3.2. 算法改进
1) 十进制编码改进策略
普通的QPSO采用二进制编码,分别用0、1来表示开关的断开和闭合,但开关一旦较多,算法中粒子的搜索空间必将倍数增长,最终导致整体算法迭代时间变长,也可能会产生大量的不可行解。于是本文采用十进制编码方式,可以有效的缓解维数灾难。因此需对式(7)作出如下改进:
(9)
(10)
此外,这样编码会导致粒子各维的上下限不同,但粒子更新不能越界。为此对粒子进行约束:
(11)
(12)
式(11)中,
表示粒子c的第g维分量;
和
分别表示粒子第g维的上下限。
2) 配电网分层改进策略
配电网大部分为辐射型,结构为拓扑结构。在配电网重构的过程中,每一次迭代都会生成不同的拓扑结构,如果是较大的配电网,节点数量也会增多,这种时候如果采用单一的前推后代,迭代时间将会以几何倍数增加,而对于配电网重构这种现实问题,多一秒都会造成巨大的损失,于是,将配电网拓扑结构分层分区,就能够有效的减短算法迭代的时间。所以在拓扑图中,可以将相互连接的节点进行分层,层与层之间的连接以及原有线路状态就能更好在较为复杂且含有多个电源点的配电网系统中进行层次化潮流计算,这样不仅增加了计算速度而且也不会因为结构混乱使得潮流计算结果不准确 [11] ,比如对图1配电网系统网络进行分层:
Figure 1. Distribution network topology layered diagram
图1. 配电网拓扑分层图
2.3.3. 算法流程
QPSO的算法流程图如图2所示:
3. 算例分析
3.1. 节点编码以及参数设置
本文选取经典的IEEE33节点系统作为本文的算例系统,具体如图3所示:
Figure 3. IEEE33 node system diagram
图3. IEEE33节点系统图
IEEE33节点系统包含有33个节点,其中实线表示的为分段支路,共32条,装有分段开关;虚线表示的为联络支路,共5条,装有联络开关。该节点算例系统的基准功率为10 MVA,网络首端的基准电压为12.66 kV,有功负荷为3715 kW,无功负荷为2300 kW。
对IEEE33节点系统进行编码,具体编码结果如表1:
在采用改进的量子粒子群算法进行网络恢复重构时,算法的具体参数设置为:种群规模m设置为50,迭代次数设为100,收敛精度为10−6,维数d设为5。
3.2. 单电源仿真模拟
假设支路7发生故障,此时使用改进的量子粒子群算法对配电网进行修复,修复结果如表2所示:
Table 2. Comparison table of single power supply failures before and after recovery
表2. 单电源故障恢复前后对比表
电网故障恢复后拓扑图如图4所示:
Figure 4. Topology diagram after failure recovery
图4. 故障恢复后拓扑图
故障前以及故障恢复后的节点电压图如图5所示:
Figure 5. Comparison of node voltages before and after fault recovery in a single power supply system
图5. 单电源系统故障恢复前后节点电压对比图
3.3. 分布式电源仿真模拟
分别在IEEE33节点算例系统的14节点、17节点、32节点处接入分布式电源,接入分布式电源后的算例系统如图6所示。
Figure 6. IEEE33 node graph for adding distributed power
图6. 加入分布式电源的IEEE33节点图
接入分布式电源的容量如表3所示:
Table 3. Distributed power parameters
表3. 分布式电源参数
设支路7发生故障。此时使用改进的量子粒子群算法对配电网进行修复,修复结果如表4所示:
Table 4. Comparison table of multiple power supply failures before and after recovery
表4. 多电源故障恢复前后对比表
电网故障恢复后拓扑图如图7所示:
Figure 7. Repaired IEEE33 topology
图7. 修复后的IEEE33拓扑图
故障前以及故障恢复后的节点电压图如图8所示:
Figure 8. Comparison of node voltages before and after fault recovery in a multi power supply system
图8. 多电源系统故障恢复前后节点电压对比图
4. 结论
本文在粒子群算法的基础上进行改进,分别是使用十进制编码和配电网分层策略,以网损大小、电压偏移建立目标函数,在配电网发生故障后,对配电网网络进行故障恢复重构。以多电源仿真结果为例,故障前的网络损耗为136.2549 kW,最低节点电压为0.9133;故障恢复后,系统的最小网络损耗为86.2575 kW,最低节点电压为0.9576。通过跟PSO以及QPSO的算法对比可以得出,本文提出的改进算法进行配电网故障恢复,不仅能降低网络损耗,还提高了配电网各点的电压,为进一步研究配电网的故障恢复重构提供了样例。