[1] |
Arena, T.A., Chou, B., Harms, P.D. and Wong, A.W. (2019) An Anti-Apoptotic HEK293 Cell Line Provides a Robust and High Titer Platform for Transient Protein Expression in Bioreactors. mAbs, 11, 977-986. https://doi.org/10.1080/19420862.2019.1598230 |
[2] |
Walsh, G. (2014) Biopharmaceutical Benchmarks 2014. Na-ture Biotechnology, 32, 992-1000. https://doi.org/10.1038/nbt.3040 |
[3] |
王佃亮, 韩梅胜. 动物细胞培养用生物反应器及相关技术[J]. 中国生物工程杂志, 2003, 23(11): 24-27. |
[4] |
Sieblist, C., Jenzsch, M., Pohlscheidt, M. and Lubbert, A. (2011) Insights into Large-Scale Cell-Culture Reactors: I. Liquid Mixing and Oxygen Supply. Biotechnology Journal, 6, 1532-1546. https://doi.org/10.1002/biot.201000408 |
[5] |
Chaudhary, G., Luo, R., George, M., Tescione, L., Khetan, A. and Lin, H. (2020) Understanding the Effect of High Gas Entrance Velocity on Chinese Hamster Ovary (CHO) Cell Culture Per-formance and Its Implications on Bioreactor Scale-Up and Sparger Design. Biotechnology and Bioengineering, 117, 1684-1695. https://doi.org/10.1002/bit.27314 |
[6] |
Mcdowell, C.L. and Papoutsakis, E.T. (1998) Increased Agita-tion Intensity Increases CD13 Receptor Surface Content and mRNA Levels, and Alters the Metabolism of HL60 Cells Cultured in Stirred Tank Bioreactors. Biotechnology and Bioengineering, 60, 239-250. https://doi.org/10.1002/(SICI)1097-0290(19981020)60:2<239::AID-BIT11>3.0.CO;2-H |
[7] |
Sieck, J.B., Cordes, T., Budach, W.E., Rhiel, M.H., Suemeghy, Z., Leist, C., Villiger, T.K., Morbidelli, M. and Soos, M. (2013) Develop-ment of a Scale-Down Model of Hydrodynamic Stress to Study the Performance of an Industrial CHO Cell Line under Simulated Production Scale Bioreactor Conditions. Journal of Biotechnology, 164, 41-49. https://doi.org/10.1016/j.jbiotec.2012.11.012 |
[8] |
李自良, 赵彩红, 王美皓, 王家敏, 乔自林, 李倬. 动物细胞生物反应器研究进展[J]. 动物医学进展, 2020, 41(6): 103-108. |
[9] |
安笑辉. 错位桨搅拌生物反应器流场特性及溶氧性能研究[D]: [硕士学位论文]. 济南: 山东大学, 2015. |
[10] |
黄志坚, 虞培清, 苏扬, 周国忠. 发酵罐用搅拌器的工业应用进展[J]. 医药工程设计, 2004, 25(1): 1-4. |
[11] |
周志玮. 动物细胞生物反应器关键技术研究及其结构优化[D]: [博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2012. |
[12] |
孙庆丰. 搅拌釜式生物反应器设计及优化[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2007. |
[13] |
曾昭阳. 生物反应器搅拌桨桨叶优化设计[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2014. |
[14] |
林亨特. 斜插式搅拌桨在一次性生物反应器中的应用研究[D]: [硕士学位论文]. 杭州: 浙江工业大学, 2019. |
[15] |
赵学明, 黄霄, 马红武, 樊菽新, 于振生. 搅拌生物反应器的循环时间分布和混合结构模型[J]. 化工学报, 1999, 50(3): 326-336. |
[16] |
Riet, K.V. and Smith, J.M. (1973) The Behav-iour of Gas-Liquid Mixtures near Rushton Turbine Blades. Chemical Engineering Science, 28, 1031-1037. https://doi.org/10.1016/0009-2509(73)80005-3 |
[17] |
潘傲. 基于计算流体力学的搅拌式生物反应器内流场环境对微生物发酵过程的影响研究[D]: [博士学位论文]. 上海: 华东理工大学, 2018. |
[18] |
李承拓. 带挡板的锥底振荡生物反应器流场特性研究[D]: [硕士学位论文]. 杭州: 浙江工业大学, 2020. |
[19] |
陈光. 笼式通气搅拌生物反应器的结构优化与性能研究[D]: [硕士学位论文]. 济南: 山东大学, 2016. |
[20] |
Pandit, A.B., Rielly, C.D., Niranjan, K. and Davidson, J.F. (1989) The Convex Bladed Mixed Flow Impeller and the Marine Propeller: A Multipurpose Agi-tator. Chemical Engineering Science, 44, 2463-2474. https://doi.org/10.1016/0009-2509(89)85190-5 |
[21] |
Sandadi, S., Pedersen, H., Bowers, J.S. and Rendeiro, D. (2011) A Comprehensive Comparison of Mixing, Mass Transfer, Chinese Hamster Ovary Cell Growth, and Antibody Production Using Rushton Turbine and Marine Impellers. Bioprocess and Biosystems Engineering, 34, 819-832. https://doi.org/10.1007/s00449-011-0532-0 |
[22] |
赵晓伟. 采用Elephant Ear桨叶的生物反应器结构优化和细胞剪切特性研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2010. |
[23] |
任杰. 搅拌反应器流场与动力性能的模拟及实验研究[D]: [硕士学位论文]. 郑州: 郑州大学, 2007. |
[24] |
马鑫. 搅拌桨叶表面应力的测量及分析[D]: [硕士学位论文]. 北京: 北京化工大学, 2000. |
[25] |
Collignon, M.L., Delafosse, A., Crine, M. and Toye, D. (2010) Axial Impeller Selection for Anchorage Dependent Animal Cell Culture in Stirred Bioreactors: Methodology Based on the Impeller Comparison at Just-Suspended Speed of Rotation. Chemical Engineering Science, 65, 5929-5941. https://doi.org/10.1016/j.ces.2010.08.027 |
[26] |
Simmons, M.J.H., Zhu, H., Bujalski, W., Hewitt, C.J. and Nienow, A.W. (2007) Mixing in a Model Bioreactor Using Agitators with a High Solidity Ratio and Deep Blades. Chemical En-gineering Research and Design, 85, 551-559. https://doi.org/10.1205/cherd06157 |
[27] |
Gogate, P.R., Beenackers, A.A. and Pandit, A.B. (2000) Multiple-Impeller Systems with a Special Emphasis on Bioreactors: A Critical Review. Biochemical Engineering Journal, 6, 109-144. https://doi.org/10.1016/S1369-703X(00)00081-4 |
[28] |
Arjunwadkar, S.J., Saravanan, K., Pandit, A.B. and Kulkarni, P.R. (1998) Optimizing the Impeller Combination for Maximum Hold-Up with Minimum Power Consumption. Bio-chemical Engineering Journal, 1, 25-30. https://doi.org/10.1016/S1369-703X(97)00005-3 |
[29] |
Nocentini, M., Fajner, D., Pasquali, G. and Magelli, F. (1993) Gas-Liquid Mass Transfer and Holdup in Vessels Stirred with Multiple Rushton Turbines: Water and Wa-ter-Glycerol Solutions. Industrial & Engineering Chemistry Research, 32, 19-26. https://doi.org/10.1021/ie00013a003 |
[30] |
Zhu, H., Nienow, A.W., Bujalski, W. and Simmons, M.J.H. (2009) Mixing Studies in a Model Aerated Bioreactor Equipped with an Up- or a Down-Pumping “Elephant Ear” Agitator: Power, Hold-Up and Aerated Flow Field Measurements. Chemical Engineering Research and Design, 87, 307-317. https://doi.org/10.1016/j.cherd.2008.08.013 |
[31] |
李美婷, 李威, 李晓光, 杨锋苓. 偏心轴搅拌槽内的层流流场特性[J]. 山东大学学报(工学版), 2019, 49(4): 93-98+107. |
[32] |
Büche, W. (1937) Leistungsbedarf von Rührwerken. Zeitschrift des Vereines Deutscher Ingenieure, 81, 1065-1069. |
[33] |
Nienow, A.W., Rielly, C.D., Brosnan, K., Bargh, N., Lee, K., Coopman, K. and Hewitt, C.J. (2013) The Physical Characterisation of a Microscale Parallel Bioreactor Platform with an Industrial CHO Cell Line Expressing an IgG4. Biochemical Engineering Journal, 76, 25-36. https://doi.org/10.1016/j.bej.2013.04.011 |
[34] |
Bulnes-Abundis, D., Carrillo-Cocom, L.M., Araiz-Hernandez, D., Garcia-Ulloa, A., Granados-Pastor, M., Sanchez-Arreola, P.B., Murugappan, G. and Alvarez, M.M. (2013) A Simple Eccentric Stirred Tank Mini-Bioreactor: Mixing Characterization and Mammalian Cell Culture Experiments. Biotechnolo-gy and Bioengineering, 110, 1106-1118. https://doi.org/10.1002/bit.24780 |
[35] |
郭玉蕾, 唐亮, 孙瑞强, 李尤, 陈依军. 高通量微型生物反应器的研究进展[J]. 中国生物工程杂志, 2018, 38(8): 69-75. |
[36] |
Alcamo, R., Micale, G., Grisafi, F., Brucato, A. and Ciofalo, M. (2005) Large-Eddy Simulation of Turbulent Flow in an Unbaffled Stirred Tank Driven by a Rushton Turbine. Chemical Engineering Science, 60, 2303-2316. https://doi.org/10.1016/j.ces.2004.11.017 |
[37] |
Kreitmayer, D., Gopireddy, S.R., Matsuura, T., Aki, Y., Katayama, Y., Nakano, T., Eguchi, T., Kakihara, H., Nonaka, K., Profitlich, T., Urbanetz, N.A. and Gutheil, E. (2022) CFD-Based and Experimental Hydrodynamic Characterization of the Single-Use Bioreactor Xcellerex(TM) XDR-10. Bioengineering (Basel), 9, 22. https://doi.org/10.3390/bioengineering9010022 |
[38] |
骆海燕, 窦冰然, 姜开维, 洪厚胜. 搅拌式动物细胞反应器研究应用与发展[J]. 生物加工过程, 2016, 14(2): 75-80. |
[39] |
Myers, K., Reeder, M.E. and Fasano, J.B. (2002) Optimize Mixing by Using the Proper Baffles. Chemical Engineering Progress, 98, 42-47. |
[40] |
佟立军. 机械搅拌槽挡板的研究[J]. 有色设备, 2005(3): 17-19+49. |
[41] |
Lu, W.M., Wu, H.Z. and Ju, M.Y. (1997) Effects of Baffle De-sign on the Liquid Mixing in an Aerated Stirred Tank with Standard Rushton Turbine Impellers. Chemical Engineering Science, 52, 3843-3851. https://doi.org/10.1016/S0009-2509(97)88929-4 |
[42] |
沈春银, 陈剑佩, 张家庭, 戴干策. 机械搅拌反应器中挡板的结构设计[J]. 高校化学工程学报, 2005, 19(2): 162-168. |
[43] |
曹杨. Rushton搅拌釜式生物反应器的γ射线CT测量及流体力学模拟计算[D]: [硕士学位论文]. 湘潭: 湘潭大学, 2010. |
[44] |
Xu, S. and Chen, H. (2016) High-Density Mammalian Cell Cultures in Stirred-Tank Bioreactor without External pH Control. Journal of Biotechnol-ogy, 231, 149-159. https://doi.org/10.1016/j.jbiotec.2016.06.019 |
[45] |
Chisti, Y. (1993) Animal Cell Culture in Stirred Bioreactors: Observations on Scale-Up. Bioprocess Engineering, 9, 191-196. https://doi.org/10.1007/BF00369402 |
[46] |
洪厚胜, 张庆文, 万红贵, 欧阳平凯. 搅拌生物反应器混合特性的数值模拟与实验研究[J]. 过程工程学报, 2005, 5(2): 131-134. |
[47] |
Lu, W.M. and Ju, S.J. (1987) Local Gas Holdup, Mean Liquid Velocity and Turbulence in an Aerated Stirred Tank Using Hot-Film Anemometry. The Chemical Engi-neering Journal, 35, 9-17. https://doi.org/10.1016/0300-9467(87)80035-7 |
[48] |
Godoy-Silva, R., Chalmers, J.J., Casnocha, S.A., Bass, L.A. and Ma, N. (2009) Physiological Responses of CHO Cells to Repetitive Hydrodynamic Stress. Biotechnology and Bio-engineering, 103, 1103-1117. https://doi.org/10.1002/bit.22339 |
[49] |
Rushton, J.H., Costich, E.W. and Everett, H.J. (1950) Power Characteristics of Mixing Impeller. Chemical Engineering Progress, 46, 395-404. |
[50] |
Garcia-Ochoa, F. and Gomez, E. (2009) Biore-actor Scale-Up and Oxygen Transfer Rate in Microbial Processes: An Overview. Biotechnology Advances, 27, 153-176. https://doi.org/10.1016/j.biotechadv.2008.10.006 |
[51] |
Scully, J., Considine, L.B., Smith, M.T., Mcalea, E., Jones, N., O’connell, E., Madsen, E., Power, M., Mellors, P., Crowley, J., O’leary, N., Carver, S. and Van Plew, D. (2020) Beyond Heuristics: CFD-Based Novel Multiparameter Scale-Up for Geometrically Disparate Bioreactors Demonstrated at Industrial 2kL-10kL Scales. Biotechnology and Bioengineering, 117, 1710-1723. https://doi.org/10.1002/bit.27323 |
[52] |
Johnson, C., Natarajan, V. and Antoniou, C. (2014) Verification of Energy Dissipation Rate Scalability in Pilot and Production Scale Bioreactors Using Computational Fluid Dynamics. Biotechnol-ogy Progress, 30, 760-764. https://doi.org/10.1002/btpr.1896 |
[53] |
Kolmogorov, A.N. (1941) The Local Structure of Turbulence in Incom-pressible Viscous Fluid for Very Large Reynolds Numbers. Proceedings of the USSR Academy of Sciences, 30, 299-303. |
[54] |
Mcqueen, A., Meilhoc, E. and Bailey, J.E. (1987) Flow Effects on the Viability and Lysis of Suspended Mammalian Cells. Biotechnology Letters, 9, 831-836. https://doi.org/10.1007/BF01026191 |
[55] |
Ahmed, S.U., Ranganathan, P., Pandey, A. and Sivaraman, S. (2010) Computational Fluid Dynamics Modeling of Gas Dispersion in Multi Impeller Bioreactor. Journal of Bioscience and Bioengineering, 109, 588-597. https://doi.org/10.1016/j.jbiosc.2009.11.014 |
[56] |
Martín, M., Montes, F.J. and Galán, M.A. (2010) Mass Transfer Rates from Bubbles in Stirred Tanks Operating with Viscous Fluids. Chemical Engineering Science, 65, 3814-3824. https://doi.org/10.1016/j.ces.2010.03.015 |
[57] |
Kawase, Y., Halard, B. and Moo-Young, M. (1992) Liquid-Phase Mass Transfer Coefficients in Bioreactors. Biotechnology and Bioengineering, 39, 1133-1140. https://doi.org/10.1002/bit.260391109 |
[58] |
Michel, B.J. and Miller, S.A. (1962) Power Requirements of Gas-Liquid Agitated Systems. AIChE Journal, 8, 262-266. https://doi.org/10.1002/aic.690080226 |
[59] |
张永震. 搅拌釜式生物反应器的计算流体力学模拟[D]: [硕士学位论文]. 天津: 天津大学, 2005. |
[60] |
侯仰帅, 费保进, 梁洪, 杨金亮, 宋春雷, 胡珍霞, 张骞, 黄娟, 向雨秘, 雷韬. 生物反应器不同搅拌速度的计算流体力学模拟及对悬浮培养CHO细胞的影响[J]. 中国生物制品学杂志, 2020, 33(11): 1285-1291. |
[61] |
Ghadge, R.S., Patwardhan, A.W. and Joshi, J.B. (2006) Combined Effect of Hydrodynamic and Interfacial Flow Parameters on Lysozyme Deactivation in a stirred Tank Bioreactor. Biotechnology Progress, 22, 660-672. https://doi.org/10.1021/bp050269s |
[62] |
Zhou, G. and Kresta, S.M. (1996) Impact of Tank Geometry on the Maxi-mum Turbulence Energy Dissipation Rate for Impellers. AIChE Journal, 42, 2476-2490. https://doi.org/10.1002/aic.690420908 |
[63] |
Fries, S., Glazomitsky, K., Woods, A., Forrest, G. and Chartrain, M. (2005) Evaluation of Disposable Bioreactors Rapid Production of Recombinant Proteins by Several Animal Cell Lines. BioProcess International, 3, 36-44. |
[64] |
Sandner, V., Pybus, L.P., Mccreath, G. and Glassey, J. (2019) Scale-Down Model Development in Ambr Systems: An Industrial Perspective. Biotechnology Journal, 14, e1700766. https://doi.org/10.1002/biot.201700766 |
[65] |
Oh, S.K.W., Nienow, A.W., Al-Rubeai, M. and Emery, A.N. (1989) The Effects of Agitation Intensity with and without Continuous Sparging on the Growth and Antibody Production of Hybridoma Cells. Journal of Biotechnology, 12, 45-61. https://doi.org/10.1016/0168-1656(89)90128-4 |
[66] |
Sorg, R., Tanzeglock, T., Soos, M., Morbidelli, M., Perilleux, A., Solacroup, T. and Broly, H. (2011) Minimizing Hydrody-namic Stress in Mammalian Cell Culture through the Lobed Taylor-Couette Bioreactor. Biotechnology Journal, 6, 1504-1515. https://doi.org/10.1002/biot.201000477 |
[67] |
Keane, J.T., Ryan, D. and Gray, P.P. (2003) Effect of Shear Stress on Expression of a Recombinant Protein by Chinese Hamster Ovary Cells. Biotechnology and Bioengineer-ing, 81, 211-220. https://doi.org/10.1002/bit.10472 |
[68] |
Abu-Reesh, I. and Kargi, F. (1991) Biological Responses of Hybridoma Cells to Hydrodynamic Shear in an Agitated Bioreactor. Enzyme and Microbial Technology, 13, 913-919. https://doi.org/10.1016/0141-0229(91)90108-M |
[69] |
谭文松, 戴干策, 陈志宏, 陈因良. 搅拌生物反应器中杂交瘤细胞生长与破损的初步研究[J]. 生物工程学报, 1996(S1): 190-196. |
[70] |
Odeleye, A.O., Marsh, D.T., Osborne, M.D., Lye, G.J. and Micheletti, M. (2014) On the Fluid Dynamics of a Laboratory Scale Single-Use Stirred Bioreactor. Chemical Engineering Science, 111, 299-312. https://doi.org/10.1016/j.ces.2014.02.032 |
[71] |
张建文, 刘禹, 夏建业, 郭美锦, 王泽建, 庄英萍. 机械搅拌生物反应器的CFD模拟及剪切力对红花细胞悬浮培养的影响[J]. 华东理工大学学报(自然科学版), 2016, 42(4): 492-498. |
[72] |
Godoy-Silva, R., Mollet, M. and Chalmers, J.J. (2009) Evaluation of the Effect of Chronic Hydrodynam-ical Stresses on Cultures of Suspensed CHO-6E6 Cells. Biotechnology and Bioengineering, 102, 1119-1130. https://doi.org/10.1002/bit.22146 |
[73] |
Neunstoecklin, B., Stettler, M., Solacroup, T., Broly, H., Morbidelli, M. and Soos, M. (2015) Determination of the Maximum Operating Range of Hydrodynamic Stress in Mammalian Cell Culture. Journal of Biotechnology, 194, 100-109. https://doi.org/10.1016/j.jbiotec.2014.12.003 |
[74] |
Tanzeglock, T., Soos, M., Stephanopoulos, G. and Morbidelli, M. (2009) Induction of Mammalian Cell Death by Simple Shear and Extensional Flows. Biotechnology and Bioengineering, 104, 360-370. https://doi.org/10.1002/bit.22405 |
[75] |
Ma, N. (2002) Quantitative Studies of the Bubble-Cell Interactions and the Mechanisms of Mammalian Cell Damage from Hydrody-namic Forces. The Ohio State University, Columbus. |
[76] |
Zhang, S., Handa-Corrigan, A. and Spier, R.E. (1992) Foaming and Media Surfactant Effects on the Cultivation of Animal Cells in Stirred and Sparged Bioreactors. Journal of Biotechnology, 25, 289-306. https://doi.org/10.1016/0168-1656(92)90162-3 |
[77] |
Michaels, J.D., Mallik, A.K. and Papoutsakis, E.T. (1996) Sparging and Agitation-Induced Injury of Cultured Animals Cells: Do Cell-to-Bubble Interactions in the Bulk Liquid In-jure Cells? Biotechnology and Bioengineering, 51, 399-409. https://doi.org/10.1002/(SICI)1097-0290(19960820)51:4<399::AID-BIT3>3.0.CO;2-D |
[78] |
Wang, D., Liu, W., Han, B. and Xu, R. (2005) The Bioreactor: A Powerful Tool for Large-Scale Culture of Animal Cells. Current Pharma-ceutical Biotechnology, 6, 397-403. https://doi.org/10.2174/138920105774370580 |
[79] |
Zhou, H., Fang, M.Y., Zheng, X. and Zhou, W.C. (2021) Improving an Intensified and Integrated Continuous Bioprocess Platform for Biologics Manufacturing. Biotechnology and Bioengineering, 118, 3618-3623. https://doi.org/10.1002/bit.27768 |