[1] |
Siegel, R.L., Miller, K.D. and Jemal, A. (2015) Cancer Statistics, 2015. CA: A Cancer Journal for Clinicians, 65, 5-29. https://doi.org/10.3322/caac.21254 |
[2] |
Torre, L.A., Bray, F., Siegel, R.L., Ferlay, J., Lortet-Tieulent, J. and Jemal, A. (2015) Global Cancer Statistics, 2012. CA: A Cancer Journal for Clinicians, 65, 87-108. https://doi.org/10.3322/caac.21262 |
[3] |
Wu, H.-H., Lin, W.-C. and Tsai, K.-W. (2014) Advances in Molecular Biomarkers for Gastric Cancer: MiRNAs as Emerging Novel Cancer Markers. Expert Reviews in Molecular Medicine, 16, e1. https://doi.org/10.1017/erm.2013.16 |
[4] |
Brenner, H., Kloor, M. and Pox, C.P. (2014) Colorectal Cancer. Lan-cet, 383, 1490-1502. https://doi.org/10.1016/S0140-6736(13)61649-9 |
[5] |
Forner, A., Llovet, J.M. and Bruix, J. (2012) Hepatocellular Carcinoma. Lancet, 379, 1245-1255. https://doi.org/10.1016/S0140-6736(11)61347-0 |
[6] |
Bartel, D.P. (2004) MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell, 116, 281-297. https://doi.org/10.1016/S0092-8674(04)00045-5 |
[7] |
Bartel, D.P. (2009) MicroRNAs: Target Recognition and Regulatory Functions. Cell, 136, 215-233. https://doi.org/10.1016/j.cell.2009.01.002 |
[8] |
Ambros, V. (2004) The Function of Animal microRNA. Nature, 431, 350-355. https://doi.org/10.1038/nature02871 |
[9] |
Esquela-Kerscher, A. and Slack, F.J. (2006) On-comirs—MicroRNAs with a Role in Cancer. Nature Reviews Cancer, 6, 259-269. https://doi.org/10.1038/nrc1840 |
[10] |
Asadzadeh, Z., Mansoori, B., Mohammadi, A., et al. (2019) Mi-croRNAs in Cancer Stem Cells: Biology, Pathways, and Therapeutic Opportunities. Journal of Cellular Physiology, 234, 10002-10017. https://doi.org/10.1002/jcp.27885 |
[11] |
Svoronos, A.A., Engelman, D.M. and Slack, F.J. (2016) OncomiR or Tumor Suppressor? The Duplicity of MicroRNAs in Cancer. Cancer Research, 76, 3666-3670. https://doi.org/10.1158/0008-5472.CAN-16-0359 |
[12] |
Wu, K., Li, L. and Li, S. (2015) Circulating microRNA-21 as a Biomarker for the Detection of Various Carcinomas: An Updated Meta-Analysis Based on 36 Studies. Tumor Biol-ogy, 36, 1973-1981. https://doi.org/10.1007/s13277-014-2803-2 |
[13] |
Volinia, S., Calin, G.A., Liu, C.G., Ambs, S., Cimmino, A., Pet-rocca, F., et al. (2006) A Microrna Expression Signature of Human Solid Tumors Defines Cancer Gene Targets. Pro-ceedings of the National Academy of Sciences of the United States of America, 103, 2257-2261. https://doi.org/10.1073/pnas.0510565103 |
[14] |
Salameh, A., Lee, A.K., Cardó-Vila, M., Nunes, D.N., Efstathi-ou, E., Staquicini, F.I., Dobroff, A.S., Marchiò, S., Navone, N.M., Hosoya, H., Lauer, R.C., Wen, S., Salmeron, C.C., Hoang, A., Newsham, I., Lima, L.A., Carraro, D.M., Oliviero, S., Kolonin, M.G., Sidman, R.L., Do, K.A., Troncoso, P., Logothetis, C.J., Brentani, R.R., Calin, G.A., Cavenee, W.K., Dias-Neto, E., Pasqualini, R. and Arap, W. (2015) PRUNE2 Is a Human Prostate Cancer Suppressor Regulated by the Intronic Long Noncoding RNA PCA3. Proceedings of the National Academy of Sciences of the United States of America, 112, 8403-8408. https://doi.org/10.1073/pnas.1507882112 |
[15] |
Bushati, N. and Cohen, S.M. (2007) MicroRNA Functions. Annual Review of Cell and Developmental Biology, 23, 175-205. https://doi.org/10.1146/annurev.cellbio.23.090506.123406 |
[16] |
Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P. and Burge, C.B. (2003) Prediction of Mammalian MicroRNA Targets. Cell, 115 787-798. https://doi.org/10.1016/S0092-8674(03)01018-3 |
[17] |
Carleton, M., Cleary, M.A. and Linsley, P.S. (2007) Mi-croRNAs and Cell Cycle Regulation. Cell Cycle, 6, 2127-2132. https://doi.org/10.4161/cc.6.17.4641 |
[18] |
Boehm, M. and Slack, F.J. (2006) MicroRNA Control of Lifespan and Metabolism. Cell Cycle, 5, 837-840. https://doi.org/10.4161/cc.5.8.2688 |
[19] |
Wang, Y.-H., Hu, H.-N., Weng, H., Chen, H., Luo, C.-L., Ji, J., Yin, C.-Q., Yuan, C.-H. and Wang, F.B. (2017) Association between Polymorphisms in MicroRNAs and Risk of Urological Cancer: A Meta-Analysis Based on 17,019 Subjects. Frontiers in Physiology, 8, Article 325. https://doi.org/10.3389/fphys.2017.00325 |
[20] |
Hou, Y., Zhen, J., Xu, X., Zhen, K., Zhu, B., Pan, R. and Zhao, C. (2015) MiR-215 Functions as a Tumor Suppressor and Directly Targets ZEB2 in Human Non-Small Cell Lung Cancer. Oncology Letters, 10, 1985-1992. https://doi.org/10.3892/ol.2015.3587 |
[21] |
Lu, J., Getz, G., Miska, E.A., Alvarez-Saavedra, E., Lamb, J., Peck, D., et al. (2005) MicroRNA Expression Profiles Classify Human Cancers. Nature, 435, 834-838. https://doi.org/10.1038/nature03702 |
[22] |
Chen, W., Wang, H., Chen, H., Liu, S., Lu, H., Kong, D., Huang, X., Kong, Q. and Lu, Z. (2014) Clinical Significance and Detection of microRNA-21 in Serum of Patients with Diffuse Large B-Cell Lymphoma in Chinese Population. European Journal of Haematology, 92, 407-412. https://doi.org/10.1111/ejh.12263 |
[23] |
Cui, M., Wang, H., Yao, X., Zhang, D., Xie, Y., Cui, R. and Zhang, X. (2019) Circulating MicroRNAs in Cancer: Potential and Challenge. Frontiers in Genetics, 10, Article 626. https://doi.org/10.3389/fgene.2019.00626 |
[24] |
Binnewies, M., Roberts, E.W., Kersten, K., Chan, V., Fearon, D.F., Merad, M., et al. (2018) Understanding the Tumor Immune Microenvironment (TIME) for Effective Therapy. Nature Medicine, 24, 541-550. https://doi.org/10.1038/s41591-018-0014-x |
[25] |
Calin, G.A., Dumitru, C.D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., et al. (2002) Frequent Deletions and Down- Regulation of Micro-RNA Genes miR15 and miR16 at 13q14 in Chronic Lymphocytic Leukemia. Proceedings of the National Academy of Sciences of the United States of America, 99, 15524-15529. https://doi.org/10.1073/pnas.242606799 |
[26] |
Cimmino, A., Calin, G.A., Fabbri, M., Iorio, M.V., Ferracin, M., Shimizu, M., et al. (2005) MiR-15 and miR-16 Induce Apoptosis by Targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America, 102, 13944-13949. https://doi.org/10.1073/pnas.0506654102 |
[27] |
Thammaiah, C.K. and Jayaram, S. (2016) Role of let-7 Family mi-croRNA in Breast Cancer. Non-Coding RNA Research, 1, 77-82. https://doi.org/10.1016/j.ncrna.2016.10.003 |
[28] |
Johnson, S.M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., et al. (2005) RAS Is Regulated by the let-7 MicroRNA Family. Cell, 120, 635-647. https://doi.org/10.1016/j.cell.2005.01.014 |
[29] |
Manier, S., Powers, J.T., Sacco, A., Glavey, S.V., Huynh, D., Reagan, M.R., et al. (2017) The LIN28B/let-7 Axis Is a Novel Therapeutic Pathway in Multiple Myeloma. Leukemia, 31, 853-860. https://doi.org/10.1038/leu.2016.296 |
[30] |
Zhang, X., Zheng, R., Jiang, L., Zhang, C., Zheng, Q., Jia, J., et al. (2020) miR-331-3p Inhibits Proliferation and Promotes Apoptosis of Nasopharyngeal Carcinoma Cells by Targeting elf4B-PI3K-AKT Pathway. Technology in Cancer Research & Treatment, 19, Article ID: 1533033819892251. https://doi.org/10.1177/1533033819892251 |
[31] |
Medina, P.P., Nolde, M. and Slack, F.J. (2010) OncomiR Addic-tion in an in Vivo Model of microRNA-21-Induced Pre-B-Cell Lymphoma. Nature, 467, 86-90. https://doi.org/10.1038/nature09284 |
[32] |
Wang, W., Li, J., Zhu, W., Gao, C., Jiang, R., Li, W., et al. (2014) Mi-croRNA-21 and the Clinical Outcomes of Various Carcinomas: A Systematic Review and Meta-Analysis. BMC Cancer, 14, Article No. 819. https://doi.org/10.1186/1471-2407-14-819 |
[33] |
李晓霞, 谢峰, 曾玉祥. 人乳腺癌中MicroRNA miR-21过表达与晚期临床分期、淋巴结转移和患者不良预后相关[J]. RNA, 2008(14): 2348-2360. |
[34] |
Ahmadvand, M., Eskandari, M., Pashaiefar, H., Yaghmaie, M., Manoochehrabadi, S., Khakpour, G., et al. (2018) Over Expression of Circulating miR-155 Predicts Prognosis in Diffuse Large B-Cell Lymphoma. Leukemia Research, 70, 45-48. https://doi.org/10.1016/j.leukres.2018.05.006 |
[35] |
Jiang, S., Zhang, H. W., Lu, M. H., He, X. H., Li, Y., Gu, H., et al. (2010) MicroRNA-155 Functions as an OncomiR in Breast Cancer by Targeting the Suppressor of Cytokine Signal-ing 1 Gene. Cancer Research, 70, 3119-3127. https://doi.org/10.1158/0008-5472.CAN-09-4250 |
[36] |
Zuo, J., Yu, Y., Zhu, M., Jing, W., Yu, M., Chai, H., et al. (2018) Inhibition of miR-155, a Therapeutic Target for Breast Cancer, Prevented in Cancer Stem Cell Formation. Cancer Biomarkers, 21, 383-392. |
[37] |
He, L., He, X., Lim, L.P., De Stanchina, E., Xuan, Z., Liang, Y., et al. (2007) A mi-croRNA Component of the p53 Tumour Suppressor Network. Nature, 447, 1130-1134. https://doi.org/10.1038/nature05939 |
[38] |
Li, J., Lai, Y., Ma, J., Liu, Y., Bi, J., Zhang, L., et al. (2017) MiR-17-5p Suppresses Cell Proliferation and Invasion by Targeting ETV1 in Triple-Negative Breast Cancer. BMC Cancer, 17, Arti-cle No. 745. https://doi.org/10.1186/s12885-017-3674-x |
[39] |
Schrijver, W.A., van Diest, P.J., Moelans, C.B. and Dutch Distant Breast Cancer Metastases Consortium (2017) Unravelling Site-Specific Breast Cancer Metastasis: A microRNA Expres-sion Profiling Study. Oncotarget, 8, 3111-3123. https://doi.org/10.18632/oncotarget.13623 |
[40] |
Wu, J.E., Ding, J., Yang, J., Guo, X. and Zheng, Y. (2018) Mi-croRNA Roles in the Nuclear Factor Kappa B Signaling Pathway in Cancer. Frontiers in Immunology, 9, Article 546. https://doi.org/10.3389/fimmu.2018.00546 |
[41] |
Han, M., Liu, M., Wang, Y., Chen, X., Xu, J., Sun, Y., et al. (2012) Antagonism of miR-21 Reverses Epithelial-Mesenchymal Transition and Cancer Stem Cell Phenotype through AKT/ERK1/2 Inactivation by Targeting PTEN. PLOS ONE, 7, e39520. https://doi.org/10.1371/journal.pone.0039520 |
[42] |
Ma, X., Becker Buscaglia, L.E., Barker, J.R. and Li, Y. (2011) MicroRNAs in NF-κB Signaling. Journal of Molecular Cell Biology, 3, 159-166. https://doi.org/10.1093/jmcb/mjr007 |
[43] |
Yin, D., Wang, Y., Sai, W., Zhang, L., Miao, Y., Cao, L., et al. (2016) HBx-Induced miR-21 Suppresses Cell Apoptosis in Hepatocellular Carcinoma by Targeting Interleukin-12. Oncology Reports, 36, 2305-2312. https://doi.org/10.3892/or.2016.5026 |
[44] |
李伯泰, 张绍平, 沈海鹏, 李春林. MicroRNA-144-3p抑制胃癌靶向抑制上皮细胞向间质细胞转化的研究进展PBX3 [J]. 生物化学. 生物物理学, 共同决议, 2017, 484(2): 241-247. |
[45] |
Shen, J., Xiao, Z., Wu, W.K., Wang, M.H., To, K.F., Chen, Y., et al. (2015) Epigenetic Silencing of miR-490-3p Reactivates the Chromatin Remodeler SMARCD1 to Promote Helicobacter pylori-Induced Gastric Carcin-ogenesismiR-490-3p Targets Oncogenic SMARCD1 in Gastric Cancer. Cancer Research, 75, 754-765. https://doi.org/10.1158/0008-5472.CAN-14-1301 |
[46] |
Tie, J., Pan, Y., Zhao, L., Wu, K., Liu, J., Sun, S., et al. (2010) MiR-218 Inhibits Invasion and Metastasis of Gastric Cancer by Targeting the Robo1 Receptor. PLOS Genetics, 6, e1000879. https://doi.org/10.1371/journal.pgen.1000879 |
[47] |
王俊杰, 焦炎, 崔林明, 江立林. miR-30在胃癌中的作用肿瘤细胞通过调节P53介导的线粒体凋亡途径[J]. 生物技术, 生物化学, 2017, 81(1): 119-126. |
[48] |
郭俊兴, 陶庆生, 楼民. miR-181b作为一个项目——胃癌抗癌治疗的潜在分子靶点[J]. 癌症预防, 2012, 13(5): 2263-2267. |
[49] |
曾志伟, 林超群, 陈超群, 黄海春, 朱海峰. 综合网络分析揭示活性微小RNA及其在胃癌中的功能[J]. 生物, 2011(5): 99. |
[50] |
谭振辉, 唐晓霞, 莫明生, 刘延平, 甘瑞林, 李延林, 张立林, 李广庆. miR-NA-374b-5p抑制RECK表达并促进胃癌细胞侵袭和转移[J]. 世界胃肠杂志, 2014, 20(46): 17439-17447. |
[51] |
Khella, H.W.Z., Bakhet, M., Allo, G., Jewett, M.A.S., Girgis, A.H., Latif, A., et al. (2013) MiR-192, miR-194 and miR-215: A Convergent microRNA Network Suppressing Tumor Progression in Renal Cell Carcinoma. Carcinogenesis, 34, 2231-2239. https://doi.org/10.1093/carcin/bgt184 |
[52] |
Mechtler, P., Singhal, R., Kichina, J.V., Bard, J.E., Buck, M.J. and Kandel, E.S. (2015) MicroRNA Analysis Suggests an Additional Level of Feedback Regulation in the NF-κB Signaling Cascade. Oncotarget, 6, 17097-17106. https://doi.org/10.18632/oncotarget.4005 |
[53] |
Vychytilova-Faltejskova, P., Merhautova, J., Machackova, T., et al. (2017) MiR-215-5p Is a Tumor Suppressor in Colorectal Cancer Targeting EGFR Ligand Epiregulin and Its Transcrip-tional Inducer HOXB9. Oncogenesis, 6, Article No. 399. https://doi.org/10.1038/s41389-017-0006-6 |