[1] |
Holst, J.J. (2007) The Physiology of Glucagon-Like Peptide 1. Physiological Reviews, 87, 1409-1439. https://doi.org/10.1152/physrev.00034.2006 |
[2] |
Rajeev, S.P. and Wilding, J. (2016) GLP-1 as a Target for Ther-apeutic Intervention. Current Opinion in Pharmacology, 31, 44-49. https://doi.org/10.1016/j.coph.2016.08.005 |
[3] |
Aroda, V.R. (2018) A Review of GLP-1 Receptor Agonists: Evo-lution and Advancement, through the Lens of Randomised Controlled Trials. Diabetes, Obesity and Metabolism, 20, 22-33. https://doi.org/10.1111/dom.13162 |
[4] |
Prasad-Reddy, L. and Isaacs, D. (2015) A Clinical Review of GLP-1 Receptor Agonists: Efficacy and Safety in Diabetes and Beyond. Drugs in Context, 4, Article ID: 212283. https://doi.org/10.7573/dic.212283 |
[5] |
Reed, J., Kanamarlapudi, V. and Bain, S. (2018) Mechanism of Cardio-vascular Disease Benefit of Glucagon-Like Peptide 1 Agonists. Cardiovascular Endocrinology & Metabolism, 7, 18-23. https://doi.org/10.1097/XCE.0000000000000147 |
[6] |
Graaf, C., Donnelly, D., Wootten, D., et al. (2016) Gluca-gon-Like Peptide-1 and Its Class B G Protein-Coupled Receptors: A Long March to Therapeutic Successes. Pharmaco-logical Reviews, 68, 954-1013. https://doi.org/10.1124/pr.115.011395 |
[7] |
Zhao, X., Wang, M., Wen, Z., et al. (2021) GLP-1 Receptor Agonists: Beyond Their Pancreatic Effects. Frontiers in Endocrinology (Lausanne), 12, Article ID: 721135. https://doi.org/10.3389/fendo.2021.721135 |
[8] |
Camilleri, M. (2015) Peripheral Mechanisms in Appetite Regula-tion. Gastroenterology, 148, 1219-1233. https://doi.org/10.1053/j.gastro.2014.09.016 |
[9] |
Berthoud, H.R. and Zheng, H. (2012) Modulation of Taste Re-sponsiveness and Food Preference by Obesity and Weight Loss. Physiology & Behavior, 107, 527-532. https://doi.org/10.1016/j.physbeh.2012.04.004 |
[10] |
Joyner, M.A., Gearhardt, A.N. and White, M.A. (2015) Food Craving as a Mediator between Addictive-Like Eating and Problematic Eating Outcomes. Eating Behaviors, 19, 98-101. https://doi.org/10.1016/j.eatbeh.2015.07.005 |
[11] |
Gearhardt, A.N., Rizk, M.T. and Treat, T.A. (2014) The Associ-ation of Food Characteristics and Individual Differences with Ratings of Craving and Liking. Appetite, 79, 166-173. https://doi.org/10.1016/j.appet.2014.04.013 |
[12] |
Chao, A.M., Wadden, T.A., Tronieri, J.S., et al. (2019) Effects of Addictive-Like Eating Behaviors on Weight Loss with Behavioral Obesity Treatment. Journal of Behavioral Medicine, 42, 246-255. https://doi.org/10.1007/s10865-018-9958-z |
[13] |
Janse Van Vuuren, M.A., Strodl, E., White, K.M. and Lockie, P.D. (2018) Emotional Food Cravings Predicts Poor Short-Term Weight Loss Following Laparoscopic Sleeve Gastrectomy. British Journal of Health Psychology, 23, 532-543. https://doi.org/10.1111/bjhp.12302 |
[14] |
Horowitz, M., Flint, A., Jones, K.L., et al. (2012) Effect of the Once-Daily Human GLP-1 Analogue Liraglutide on Appetite, Energy Intake, Energy Expenditure and Gastric Emptying in Type 2 Diabetes. Diabetes Research and Clinical Practice, 97, 258-266. https://doi.org/10.1016/j.diabres.2012.02.016 |
[15] |
Koliaki, C. and Doupis, J. (2011) Incretin-Based Therapy: A Powerful and Promising Weapon in the Treatment of Type 2 Diabetes Mellitus. Diabetes Therapy, 2, 101-121. https://doi.org/10.1007/s13300-011-0002-3 |
[16] |
Secher, A., Jelsing, J., Baquero, A.F., Hecksher-Sørensen, J., et al. (2014) The Arcuate Nucleus Mediates GLP-1 Receptor Agonist Liraglutide-Dependent Weight Loss. Journal of Clin-ical Investigation, 124, 4473-4488. https://doi.org/10.1172/JCI75276 |
[17] |
Eissele, R., Göke, R., Willemer, S., et al. (1992) Glucagon-Like Peptide-1 Cells in the Gastrointestinal Tract and Pancreas of Rat, Pig and Man. European Journal of Clinical Investigation, 22, 283-291. https://doi.org/10.1111/j.1365-2362.1992.tb01464.x |
[18] |
Diakogiannaki, E., Gribble, F.M. and Reimann, F. (2012) Nutrient Detection by Incretin Hormone Secreting Cells. Physiology & Behavior, 106, 387-393. https://doi.org/10.1016/j.physbeh.2011.12.001 |
[19] |
Nauck, M.A. and Meier, J.J. (2016) The Incretin Effect in Healthy Individuals and Those with Type 2 Diabetes: Physiology, Pathophysiology, and Response to Therapeutic Inter-ventions. The Lancet Diabetes & Endocrinology, 4, 525-536. https://doi.org/10.1016/S2213-8587(15)00482-9 |
[20] |
Drucker, D.J. and Nauck, M.A. (2006) The Incretin System: Glucagon-Like Peptide-1 Receptor Agonists and Dipeptidyl Peptidase-4 Inhibitors in Type 2 Diabetes. The Lancet, 368, 1696-1705. https://doi.org/10.1016/S0140-6736(06)69705-5 |
[21] |
Caruso, I., Cignarelli, A. and Giorgino, F. (2019) Heteroge-neity and Similarities in GLP-1 Receptor Agonist Cardiovascular Outcomes Trials. Trends in Endocrinology and Metab-olism, 30, 578-589. https://doi.org/10.1016/j.tem.2019.07.004 |
[22] |
Nauck, M.A., Heimesaat, M.M., Orskov, C., Holst, J.J., Ebert, R. and Creutzfeldt, W. (1993) Preserved Incretin Activity of Glucagon-Like Peptide 1 [7-36 amide] but Not of Synthetic Human Gastric Inhibitory Polypeptide in Patients with Type-2 Diabetes Mellitus. Journal of Clinical Investigation, 91, 301-307. https://doi.org/10.1172/JCI116186 |
[23] |
Nauck, M.A., Kleine, N., Orskov, C., Holst, J.J., Willms, B. and Creutzfeldt, W. (1993) Normalization of Fasting Hyperglycaemia by Exogenous Glucagon-Like Peptide 1 (7-36 Amide) in Type 2 (Non-Insulin-Dependent) Diabetic Patients. Diabetologia, 36, 741-744. https://doi.org/10.1007/BF00401145 |
[24] |
Nauck, M.A., Heimesaat, M.M., Behle, K., Holst, J.J., Nauck, M.S., Ritzel, R., Hüfner, M. and Schmiegel, W.H. (2002) Effects of glucagon-Like Peptide 1 on Counterregulatory Hormone Responses, Cognitive Functions, and Insulin Secretion during Hyperinsulinemic, Stepped Hypoglycemic Clamp Experi-ments in Healthy Volunteers. The Journal of Clinical Endocrinology & Metabolism, 87, 1239-1246. https://doi.org/10.1210/jcem.87.3.8355 |
[25] |
McLean, B.A., Wong, C.K., Campbell, J.E., Hodson, D.J., Trapp, S. and Drucker, D.J. (2021) Revisiting the Complexity of GLP-1 Action from Sites of Synthesis to Receptor Activation. Endocrine Reviews, 42, 101-132. https://doi.org/10.1210/endrev/bnaa032 |
[26] |
Heimbürger, S.M., Bergmann, N.C., Augustin, R., Gasbjerg, L.S., Christensen, M.B. and Knop, F.K. (2020) Glucose-Dependent Insulinotropic Polypeptide (GIP) and Cardiovascular Disease. Peptides, 125, Article ID: 170174. https://doi.org/10.1016/j.peptides.2019.170174 |
[27] |
Mingrone, G., Panunzi, S., De Gaetano, A., et al. (2012) Bari-atric Surgery versus Conventional Medical Therapy for Type 2 Diabetes. The New England Journal of Medicine, 366, 1577-1585. https://doi.org/10.1056/NEJMoa1200111 |
[28] |
Mingrone, G., Panunzi, S., De Gaetano, A., et al. (2021) Metabolic Surgery versus Conventional Medical Therapy in Patients with Type 2 Diabetes: 10-Year Follow-Up of an Open-Label, Single-Centre, Randomised Controlled Trial. The Lancet, 397, 293-304. https://doi.org/10.1016/S0140-6736(20)32649-0 |
[29] |
Wren, A.M., Small, C.J., Abbott, C.R., et al. (2001) Ghrelin Causes Hyperphagia and Obesity in Rats. Diabetes, 50, 2540-2547. https://doi.org/10.2337/diabetes.50.11.2540 |
[30] |
Casajoana, A., Pujol, J., Garcia, A., et al. (2017) Predictive Value of Gut Peptides in T2D Remission: Randomized Controlled Trial Comparing Metabolic Gastric Bypass, Sleeve Gastrec-tomy and Greater Curvature Plication. Obesity Surgery, 27, 2235-2245. https://doi.org/10.1007/s11695-017-2669-7 |
[31] |
Nosso, G., Griffo, E., Cotugno, M., et al. (2016) Comparative Effects of Roux-en-Y Gastric Bypass and Sleeve Gastrectomy on Glucose Homeostasis and Incretin Hormones in Obese Type 2 Diabetic Patients: A One-Year Prospective Study. Hormone and Metabolic Research, 48, 312-317. https://doi.org/10.1055/s-0041-111505 |
[32] |
Stefater, M.A., Sandoval, D.A., Chambers, A.P., Wilson-Perez, H.E. and Hofmann, S.M. (2011) Sleeve Gastrectomy in Rats Improves Postprandial Lipid Clearance by Reducing Intestinal Triglyceride Secretion. Gastroenterology, 141, 939-949.e1-4. https://doi.org/10.1053/j.gastro.2011.05.008 |
[33] |
Nannipieri, M., Baldi, S., Mari, A., et al. (2013) Roux-en-Y Gastric Bypass and Sleeve Gastrectomy: Mechanisms of Diabetes Remission and Role of Gut Hormones. The Journal of Clinical Endocrinology & Metabolism, 98, 4391-4399. https://doi.org/10.1210/jc.2013-2538 |
[34] |
Jiménez, A., Mari, A., Casamitjana, R., Lacy, A., Ferrannini, E. and Vi-dal, J. (2014) GLP-1 and Glucose Tolerance after Sleeve Gastrectomy in Morbidly Obese Subjects with Type 2 Diabetes. Diabetes, 63, 3372-3377. https://doi.org/10.2337/db14-0357 |
[35] |
Aung, L., Lee, W.-J., Chen, S.C., et al. (2016) Bariatric Surgery for Pa-tients with Early-Onset vs Late-Onset Type 2 Diabetes. JAMA Surgery, 151, 798-805. https://doi.org/10.1001/jamasurg.2016.1130 |