[1] |
Geng, Z.-Y., Wang, D.-X. and Wu, X.-M. (2011) Minimum Effective Local Anesthetic Dose of Intrathecal Hyperbaric Ropivacaine and Bupivacaine for Cesarean Section. Chinese Medical Journal, 124, 509-513. |
[2] |
Thomas, J.M. and Schug, S.A. (1999) Recent Advances in the Pharmacokinetics of Local Anaesthetics. Long-Acting Amide Enantiomers and Continuous Infusions. Clinical Pharmacokinetics, 36, 67-83. https://doi.org/10.2165/00003088-199936010-00005 |
[3] |
Rutten, A.J., Mather, L.E., Nancarrow, C., Sloan, P.A. and McLean, C.F. (1990) Cardiovascular Effects and Regional Clearances of Intravenous Ropivacaine in Sheep. Anes-thesia & Analgesia, 70, 577-582. https://doi.org/10.1213/00000539-199006000-00001 |
[4] |
Arthur, G.R., Feldman, H.S. and Covino, B.G. (1988) Comparative Pharmacokinetics of Bupivacaine and Ropivacaine, a New Amide Local Anesthetic. Anesthesia & Analgesia, 67, 1053-1058. https://doi.org/10.1213/00000539-198867110-00006 |
[5] |
Hansen, T.G. (2004) Ropivacaine: A Pharmacological Review. Expert Review of Neurotherapeutics, 4, 781-791. https://doi.org/10.1586/14737175.4.5.781 |
[6] |
Rosenberg, P.H. and Heinonen, E. (1983) Differential Sensitivity of A and C Nerve Fibres to Long-Acting Amide Local Anaesthetics. British Journal of Anaesthesia, 55, 163-167. https://doi.org/10.1093/bja/55.2.163 |
[7] |
Wildsmith, J.A.W., Brown, D.T., Paul, D. and Johnson, S. (1989) Struc-ture-Activity Relationships in Differential Nerve Block at High and Low Frequency Stimulation. British Journal of An-aesthesia, 63, 444-452. https://doi.org/10.1093/bja/63.4.444 |
[8] |
Wolff, A.P., Hasselström, L., Kerkkamp, H.E. and Gielen, M.J. (1995) Extradural Ropivacaine and Bupivacaine in Hip Surgery. British Journal of Anaesthesia, 74, 458-460. https://doi.org/10.1093/bja/74.4.458 |
[9] |
Plakhotnik, J., Zhang, L., Estrada, M., Coles, J.G., Lonnqvist, P.A. and Maynes, J.T. (2022) Local Anesthetic Cardiac Toxicity Is Mediated by Cardiomyocyte Calcium Dynamics. Anesthesiol-ogy, 137, 687-703. https://doi.org/10.1097/ALN.0000000000004389 |
[10] |
Yoshimoto, M., Horiguchi, T., Kimura, T. and Nishikawa, T. (2017) Recovery from Ropivacaine-Induced or Levobupivacaine-Induced Cardiac Arrest in Rats: Comparison of Lipid Emulsion Effects. Anesthesia & Analgesia, 125, 1496-1502. https://doi.org/10.1213/ANE.0000000000002435 |
[11] |
Fettiplace, M.R., Akpa, B.S., Ripper, R., et al. (2014) Re-suscitation with Lipid Emulsion: Dose-Dependent Recovery from Cardiac Phar-Macotoxicity Requires a Cardiotonic Ef-fect. Anesthesiology, 120, 915-925. https://doi.org/10.1097/ALN.0000000000000142 |
[12] |
Fettiplace, M.R., Lis, K., Ripper, R., et al. (2015) Mul-ti-Modal Contributions to Detoxification of Acute Pharmacotoxicity by a Triglyceride Micro-Emulsion. Journal of Con-trolled Release, 198, 62-70. https://doi.org/10.1016/j.jconrel.2014.11.018 |
[13] |
Zhu, Y.-M., Yuan, Z.-Y., Wu, H., Zhou, D.-D. and Jing, G.-X. (2011). Midazolam in Rabbits Terminates Dysrhythmias Caused by Intracerebroventricular Ropivacaine. Journal of Zhejiang University SCIENCE B, 12, Article No. 668. https://doi.org/10.1631/jzus.B1000337 |
[14] |
Nau, C. and Wang, G.K. (2004) Interactions of Local Anesthetics with Voltage-Gated Na+ Channels. Journal of Membrane Biology, 201, 1-8. https://doi.org/10.1007/s00232-004-0702-y |
[15] |
Chen, Y., Yan, L., Zhang, Y. and Yang, X. (2019) The Role of DRP1 in Ropivacaine-Induced Mitochondrial Dysfunction and Neurotoxicity. Artificial Cells, Nanomedicine, and Bio-technology, 47, 1788-1796. https://doi.org/10.1080/21691401.2019.1594858 |
[16] |
O’Neill, P., Duarte, F., Ribeiro, I., Centeno, M.J. and Moreira, J. (2012) Ropivacaine Continuous Wound Infusion versus Epidural Morphine for Postoperative Analgesia after Cesarean Delivery: A Randomized Controlled Trial. Anesthesia & Analgesia, 114, 179-185. https://doi.org/10.1213/ANE.0b013e3182368e87 |
[17] |
Eljezi, V., Imhoff, E., Bourdeaux, D., Pereira, B., et al. (2017). Bilateral Sternal Infusion of Ropivacaine and Length of Stay in ICU after Cardiac Surgery with Increased Respir-atory Risk: A Randomised Controlled Trial. European Journal of Anaesthesiology, 34, 56-65. https://doi.org/10.1097/EJA.0000000000000564 |
[18] |
Li, H., Liu, T., Zhu, Y., Fu, Q., et al. (2017). An in Situ-Forming Phospholipid-Based Phase Transition Gel Prolongs the Duration of Local Anesthesia for Ropivacaine with Minimal Toxicity. Acta Biomaterialia, 58, 136-145. https://doi.org/10.1016/j.actbio.2017.06.013 |
[19] |
Taha, A.M., and Abd-Elmaksoud, A.M. (2014). Ropivacaine in Ultrasound-Guided Femoral Nerve Block: What Is the Minimal Effective Anaesthetic Concentration (EC90)? Anaesthesia, 69, 678-682. https://doi.org/10.1111/anae.12607 |
[20] |
Fang, G., Wan, L., Mei, W., Yu, H.H. and Luo, A.L. (2016). The Minimum Effective Concentration (MEC90) of Ropivacaine for Ultrasound-Guided Supraclavicular Brachial Plexus Block. Anaesthesia, 71, 700-705. https://doi.org/10.1111/anae.13445 |
[21] |
Christiansen, C.B., Madsen, M.H., Rothe, C., Andreasen, A.M., Lundstrøm, L.H. and Lange, K.H.W. (2019) Volume of Ropivacaine 0.2% and Sciatic Nerve Block Duration: A Ran-domized, Blinded Trial in Healthy Volunteers. Acta Anaesthesiologica Scandinavica, 64, 238-244. https://doi.org/10.1111/aas.13489 |
[22] |
Marhofer, D., Kettner, S.C., Marhofer, P., Pils, S., Weber, M. and Zeitlinger, M. (2013) Dexmedetomidine as an Adjuvant to Ropivacaine Prolongs Peripheral Nerve Block: A Volunteer Study. Brit-ish Journal of Anaesthesia, 110, 438-442. https://doi.org/10.1093/bja/aes400 |
[23] |
Sun, N., Wang, S., Ma, P., Liu, S., Shao, A. and Xiong, L. (2017). Postoperative Analgesia by a Transversus Abdominis Plane Block Using Different Concentrations of Ropivacaine for Abdominal Surgery: A Meta-Analysis. The Clinical Journal of Pain, 33, 853-863. https://doi.org/10.1097/AJP.0000000000000468 |
[24] |
Higuchi, H., Adachi, Y. and Kazama, T. (2004). Factors Af-fecting the Spread and Duration of Epidural Anesthesia with Ropivacaine. Anesthesiology, 101, 451-460. https://doi.org/10.1097/00000542-200408000-00027 |
[25] |
Girsberger, S.A., Schneider, M.P., Löffel, L.M., Burkhard, F.C. and Wuethrich, P.Y. (2018) Effect of Thoracic Epidural Ropivacaine versus Bupivacaine on Lower Uri-nary Tract Function: A Randomized Clinical Trial. Anesthesiology, 128, 511-519. https://doi.org/10.1097/ALN.0000000000001980 |
[26] |
Panousis, P., Heller, A.R., Koch, T. and Litz, R.J. (2009). Epidural Ropivacaine Concentrations for Intraoperative Analgesia during Major Upper Abdominal Surgery: A Prospec-tive, Randomized, Double-Blinded, Placebo-Controlled Study. Anesthesia & Analgesia, 108, 1971-1976. https://doi.org/10.1213/ane.0b013e3181a2a301 |
[27] |
Liu, F.-C., Liou, J.-T., Li, A.-H., Day, Y.-J. and Yu, H.-P. (2010) The Effect of Warmed Ropivacaine to Body Temperature on Epidural Sensory Block Characteristics. Journal of Clinical Anesthesia, 22, 110-114. https://doi.org/10.1016/j.jclinane.2009.03.014 |
[28] |
Hong, J.-Y., Han, S.W., Kim, W.O., Cho, J.S. and Kil, H.K. (2009). A Comparison of High Volume/Low Concentration and Low Volume/High Concentration Ropivacaine in Caudal Analgesia for Pediatric Orchiopexy. Anesthesia & Analgesia, 109, 1073-1078. https://doi.org/10.1213/ane.0b013e3181b20c52 |
[29] |
Cho, J.E., Kim, J.Y., Park, S.J. and Kil, H.K. (2015). The Ef-fect of 1 µg/kg Dexmedetomidine Combined with High-Volume/Low-Concentration Caudal Ropivacaine in Children Undergoing Ambulatory Orchiopexy. Biological & Pharmaceutical Bulletin, 38, 1020-1025. https://doi.org/10.1248/bpb.b15-00086 |
[30] |
Matsota, P.K., Markantonis, S.L., Fousteri, M.Z.F., Pandazi, A.K., Manikis, D.E., Christodoulopoulou, T.C., et al. (2009) Excretion of Ropivacaine in Breast Milk during Patient-Controlled Epidural Analgesia after Cesarean Delivery. Regional Anesthesia & Pain Medicine, 34, 126-129. https://doi.org/10.1097/AAP.0b013e3181958f39 |
[31] |
Zhao, Y., Xin, Y., Liu, Y., Yi, X. and Liu, Y. (2017) Effect of Epidural Dexmedetomidine Combined with Ropivacaine in Labor Analgesia: A Randomized Double-Blinded Con-trolled Study. The Clinical Journal of Pain, 33, 319-324. https://doi.org/10.1097/AJP.0000000000000411 |
[32] |
Campbell, D.C., Zwack, R.M., Crone, L.A.L. and Yip, R.W. (2000) Ambulatory Labor Epidural Analgesia: Bupivacaine versus Ropivacaine. Anesthesia & Analgesia, 90, 1384-1389. https://doi.org/10.1097/00000539-200006000-00023 |
[33] |
Takenami, T., Wang, G., Nara, Y., et al. (2012) In-trathecally Administered Ropivacaine Is Less Neurotoxic than Procaine, Bupivacaine, and Levobupivacaine in a Rat Spi-nal Model. Canadian Journal of Anesthesia/Journal Canadien d’Anesthésie, 59, 456-465. https://doi.org/10.1007/s12630-012-9685-9 |
[34] |
Wang, Y., Zha, H., Fang, X., Shen, T., et al. (2022) Dose Selec-tion of Ropivacaine for Spinal Anesthesia in Elderly Patients with Hip Fracture: An Up-Down Sequential Allocation Study. Clinical Interventions in Aging, 17, 1217-1226. https://doi.org/10.2147/CIA.S371219 |
[35] |
Zheng, T., Ye, P., Wu, W., Hu, B., et al. (2020) Minimum Local Anes-thetic Dose of Ropivacaine in Real-Time Ultrasound-Guided Intraspinal Anesthesia for Lower Extremity Surgery: A Randomized Controlled Trial. Annals of Translational Medicine, 8, Article No. 861. https://doi.org/10.21037/atm-20-3805 |
[36] |
Wang, W.B., Wang, Li, Y.H., Sun, A.J., et al. (2017) Determination of the Median Effective Dose (ED50) of Bupivacaine and Ropivacaine Unilateral Spinal Anesthesia: Prospective, Double Blinded, Randomized Dose-Response Trial. Der Anaesthesist, 66, 936-943. https://doi.org/10.1007/s00101-017-0370-9 |