[1] |
蒲慕明, 徐波, 谭铁牛. 脑科学与类脑研究概述[J]. 中国科学院院刊, 2016, 31(7): 725-736+714. |
[2] |
周涛, 柏文洁, 汪秉宏, 刘之景, 严钢. 复杂网络研究概述[J]. 物理, 2005, 34(1): 31-36. |
[3] |
刘涛, 陈忠, 陈晓荣. 复杂网络理论及其应用研究概述[J]. 系统工程, 2005, 23(6): 1-7. |
[4] |
Watts, D.J. and Strogatz, S.H. (1998) Collective Dynamics of “Small-World” Networks. Nature, 393, 440-442. https://doi.org/10.1038/30918 |
[5] |
Barabási, A.L. and Albert, R. (1999) Emergence of Scaling in Random Net-works. Science, 286, 509-512. https://doi.org/10.1126/science.286.5439.509 |
[6] |
Schwarz, A.J., Gozzi, A. and Bifone, A. (2008) Community Structure and Modularity in Networks of Correlated Brain Activity. Magnetic Resonance Imaging, 26, 914-920. https://doi.org/10.1016/j.mri.2008.01.048 |
[7] |
Chen, Z.J., He, Y., Rosa-Neto, P., et al. (2008) Revealing Modular Architecture of Human Brain Structural Networks by Using Cortical Thickness from MRI. Cerebral Cortex, 18, 2374-2381. https://doi.org/10.1093/cercor/bhn003 |
[8] |
Ferrarini, L., Veer, I.M., Baerends, E., et al. (2009) Hier-archical Functional Modularity in the Resting-State Human Brain. Human Brain Mapping, 30, 2220-2231. https://doi.org/10.1002/hbm.20663 |
[9] |
McIntosh, A.R. and Korostil, M. (2008) Interpretation of Neuroimaging Data Based on Network Concepts. Brain Imaging and Behavior, 2, 264-269. https://doi.org/10.1007/s11682-008-9031-6 |
[10] |
Sporns, O., Tononi, G. and Kötter, R. (2005) The Human Con-nectome: A Structural Description of the Human Brain. PLoS Computational Biology, 1, e42. https://doi.org/10.1371/journal.pcbi.0010042 |
[11] |
Friston, K.J. (1994) Functional and Effective Connectivity in Neuroimaging: A Synthesis. Human Brain Mapping, 2, 56-78. https://doi.org/10.1002/hbm.460020107 |
[12] |
Cook, S.J., Jarrell, T.A., Brittin, C.A., et al. (2019) Whole-Animal Connectomes of both Caenorhabditis elegans Sexes. Nature, 571, 63-71. https://doi.org/10.1038/s41586-019-1352-7 |
[13] |
Bullmore, E. and Sporns, O. (2012) The Economy of Brain Network Organization. Nature Reviews Neuroscience, 13, 336-349. https://doi.org/10.1038/nrn3214 |
[14] |
Hofman, M.A. (2012) Design Principles of the Human Brain: An Evolution-ary Perspective. Progress in Brain Research, 195, 373-390. https://doi.org/10.1016/B978-0-444-53860-4.00018-0 |
[15] |
Wang, R., Liu, M., Cheng, X., et al. (2021) Segregation, Integration, and Balance of Large-Scale Resting Brain Networks Configure Different Cognitive Abilities. Proceedings of the National Academy of Sciences, 118, e2022288118. https://doi.org/10.1073/pnas.2022288118 |
[16] |
Buckner, R.L. andrews-Hanna, J.R. and Schacter, D.L. (2008) The Brain’s Default Network: Anatomy, Function, and Relevance to Disease. Annals of the New York Academy of Sciences, 1124, 1-38. https://doi.org/10.1196/annals.1440.011 |
[17] |
Anticevic, A., Cole, M.W., Murray, J.D., et al. (2012) The Role of Default Network Deactivation in Cognition and Disease. Trends in Cognitive Sciences, 16, 584-592. https://doi.org/10.1016/j.tics.2012.10.008 |
[18] |
Liao, X., Vasilakos, A.V. and He, Y. (2017) Small-World Human Brain Networks: Perspectives and Challenges. Neuroscience & Biobehavioral Reviews, 77, 286-300. https://doi.org/10.1016/j.neubiorev.2017.03.018 |
[19] |
Medaglia, J.D., Huang, W., Karuza, E.A., et al. (2018) Func-tional Alignment with Anatomical Networks Is Associated with Cognitive Flexibility. Nature Human Behaviour, 2, 156-164. https://doi.org/10.1038/s41562-017-0260-9 |
[20] |
Adachi, Y., Osada, T., Sporns, O., et al. (2012) Func-tional Connectivity between Anatomically Unconnected Areas Is Shaped by Collective Network-Level Effects in the Ma-caque Cortex. Cerebral Cortex, 22, 1586-1592. https://doi.org/10.1093/cercor/bhr234 |
[21] |
Paquola, C., Amunts, K., Evans, A., et al. (2022) Closing the Mechanis-tic Gap: The Value of Microarchitecture in Understanding Cognitive Networks. Trends in Cognitive Sciences, 26, 873-886. https://doi.org/10.1016/j.tics.2022.07.001 |
[22] |
Bassett, D.S. and Sporns, O. (2017) Network Neuroscience. Nature Neuroscience, 20, 353-364. https://doi.org/10.1038/nn.4502 |
[23] |
Ito, T., Hearne, L., Mill, R., et al. (2020) Discovering the Computational Rel-evance of Brain Network Organization. Trends in Cognitive Sciences, 24, 25-38. https://doi.org/10.1016/j.tics.2019.10.005 |
[24] |
Suárez, L.E., Richards, B.A., Lajoie, G., et al. (2021) Learning Function from Structure in Neuromorphic Networks. Nature Machine Intelligence, 3, 771-786. https://doi.org/10.1038/s42256-021-00376-1 |
[25] |
Comolatti, R. and Hoel, E. (2022) Causal Emergence Is Wide-spread across Measures of Causation. |