[1] |
田婷, 李晓光. 脊髓损伤再生修复中的问题与挑战[J]. 中国组织工程研究, 2021, 25(19): 3039-3048. |
[2] |
李建平, 何留民, 吴武田. 脊髓损伤的病理改变及修复策略[J/OL]. 中国科学: 生命科学, 1-12. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD &dbname=CJFDAUTO&filename=JCXK202210005&uniplatform=NZKPT&v=iy 2zHdHGOOHSzCF9_dsaT40bDi_smcre4tMuYWdv21neGTh25wukAYerW5RGKmJS, 2022-03-21. |
[3] |
Anjum, A., Yazid, M.D., Fauzi, D.M., et al. (2020) Spinal Cord Injury: Pathophysiology, Multimo-lecular Interactions, and Underlying Recovery Mechanisms. International Journal of Molecular Sciences, 21, Article No. 7533. https://doi.org/10.3390/ijms21207533 |
[4] |
Ahuja, C.S., Nori, S., Tetreault, L., et al. (2017) Traumatic Spinal Cord Injury-Repair and Regeneration. Neurosurgery, 80, S9-S22. https://doi.org/10.1093/neuros/nyw080 |
[5] |
Barateiro, A., Brites, D. and Fernandes, A. (2016) Oligodendrocyte Development and Myelination in Neurodevelopment: Molecu-lar Mechanisms in Health and Disease. Current Pharmaceutical Design, 22, 656-679. https://doi.org/10.2174/1381612822666151204000636 |
[6] |
Kuhn, S., Gritti, L., Crooks, D., et al. (2019) Oli-godendrocytes in Development, Myelin Generation and beyond. Cells, 8, Article No. 1424. https://doi.org/10.3390/cells8111424 |
[7] |
Elbaz, B. and Popko, B. (2019) Molecular Control of Oligodendrocyte Development. Trends in Neurosciences, 42, 263-277. https://doi.org/10.1016/j.tins.2019.01.002 |
[8] |
Allen, N.J. and Lyons, D.A. (2018) Glia as Architects of Central Nervous System Formation and Function. Science, 362, 181-185. https://doi.org/10.1126/science.aat0473 |
[9] |
Philips, T. and Rothstein, J.D. (2017) Oligodendroglia: Metabolic Supporters of Neurons. Journal of Clinical Investigation, 127, 3271-3280. https://doi.org/10.1172/JCI90610 |
[10] |
Plemel, J.R., Keough, M.B., Duncan, G.J., et al. (2014) Remyelination after Spinal Cord Injury: Is It a Target for Repair? Progress in Neurobiology, 117, 54-72. https://doi.org/10.1016/j.pneurobio.2014.02.006 |
[11] |
Duncan, G.J., Manesh, S.B., Hilton, B.J., et al. (2018) Lo-comotor Recovery Following Contusive Spinal Cord Injury Does Not Require Oligodendrocyte Remyelination. Nature Communications, 9, Article No. 3066. https://doi.org/10.1038/s41467-018-05473-1 |
[12] |
Ahuja, C.S., Mothe, A., Khazaei, M., et al. (2020) The Leading Edge: Emerging Neuroprotective and Neuroregenerative Cell-Based Therapies for Spinal Cord Injury. Stem Cells Trans-lational Medicine, 9, 1509-1530. https://doi.org/10.1002/sctm.19-0135 |
[13] |
Wang, J.T., Medress, Z.A. and Barres, B.A. (2012) Axon Degeneration: Molecular Mechanisms of a Self-Destruction Pathway. Journal of Cell Biology, 196, 7-18. https://doi.org/10.1083/jcb.201108111 |
[14] |
Schwab, M.E. (2004) Nogo and Axon Regeneration. Current Opinion in Neurobiology, 14, 118-124. https://doi.org/10.1016/j.conb.2004.01.004 |
[15] |
Schwab, M.E. and Strittmatter, S.M. (2014) Nogo Limits Neural Plasticity and Recovery from Injury. Current Opinion in Neurobiology, 27, 53-60. https://doi.org/10.1016/j.conb.2014.02.011 |
[16] |
Ueno, R., Takase, H., Suenaga, J., et al. (2020) Axonal Regenera-tion and Functional Recovery Driven by Endogenous Nogo Receptor Antagonist LOTUS in a Rat Model of Unilateral Pyramidotomy. Experimental Neurology, 323, Article ID: 113068. https://doi.org/10.1016/j.expneurol.2019.113068 |
[17] |
Xi, K., Gu, Y., Tang, J., et al. (2020) Microenviron-ment-Responsive Immunoregulatory Electrospun Fibers for Promoting Nerve Function Recovery. Nature Communica-tions, 11, Article No. 4504. https://doi.org/10.1038/s41467-020-18265-3 |
[18] |
朱正桓, 邹红军, 宋志文, 刘锦波. 脊髓损伤后神经修复过程中的细胞微环境[J]. 中国组织工程研究, 2023, 27(1): 114-120. |
[19] |
Jiang, W., Ishino, Y., Hashimoto, H., et al. (2017) Sulfatase 2 Modulates Fate Change from Motor Neurons to Oligodendrocyte Precursor Cells through Coordinat-ed Regulation of Shh Signaling with Sulfatase 1. Developmental Neuroscience, 39, 361-374. https://doi.org/10.1159/000464284 |
[20] |
Saraswat, D., Shayya, H.J., Polanco, J.J., et al. (2021) Overcoming the In-hibitory Microenvironment Surrounding Oligodendrocyte Progenitor Cells Following Experimental Demyelination. Na-ture Communications, 12, Article No. 1923. https://doi.org/10.1038/s41467-021-22263-4 |
[21] |
Li, Z., Wei, H., Piirainen, S., et al. (2016) Spinal versus Brain Microglial and Macrophage Activation Traits Determine the Differential Neuroinflammatory Responses and Analgesic Effect of Minocycline in Chronic Neuropathic Pain. Brain, Behavior, and Immunity, 58, 107-117. https://doi.org/10.1016/j.bbi.2016.05.021 |
[22] |
Li, Y., He, X., Kawaguchi, R., et al. (2020) Microglia-Organized Scar-Free Spinal Cord Repair in Neonatal Mice. Nature, 587, 613-618. https://doi.org/10.1038/s41586-020-2795-6 |
[23] |
Gazdic, M., Volarevic, V., Harrell, C.R., et al. (2018) Stem Cells Therapy for Spinal Cord Injury. International Journal of Molecular Sciences, 19, Article No. 1039. https://doi.org/10.3390/ijms19041039 |
[24] |
Hayta, E. and Elden, H. (2018) Acute Spinal Cord Injury: A Review of Pathophysiology and Potential of Non-Steroidal Anti-Inflammatory Drugs for Pharmacological Intervention. Journal of Chemical Neuroanatomy, 87, 25-31. https://doi.org/10.1016/j.jchemneu.2017.08.001 |
[25] |
Quadri, S.A., Farooqui, M., Ikram, A., et al. (2020) Recent Update on Basic Mechanisms of Spinal Cord Injury. Neurosurgical Review, 43, 425-441. https://doi.org/10.1007/s10143-018-1008-3 |
[26] |
Saraswat, O.S., Bankston, A.N., Mullins, S.A., et al. (2018) Blocking Autophagy in Oligodendrocytes Limits Functional Recovery after Spinal Cord Injury. Journal of Neuroscience, 38, 5900-5912. https://doi.org/10.1523/JNEUROSCI.0679-17.2018 |
[27] |
Tuszynski, M.H. and Steward, O. (2012) Concepts and Methods for the Study of Axonal Regeneration in the CNS. Neuron, 74, 777-791. https://doi.org/10.1016/j.neuron.2012.05.006 |
[28] |
Rodríguez-Barrera, R., Rivas-González, M., García-Sánchez, J., et al. (2021) Neurogenesis after Spinal Cord Injury: State of the Art. Cells, 10, Article No. 1499. https://doi.org/10.3390/cells10061499 |
[29] |
Kuboyama, T., Kominato, S., Nagumo, M., et al. (2021) Recovery from Spinal Cord Injury via M2 Microglial Polarization Induced by Polygalae Radix. Phytomedicine, 82, Article ID: 153452. https://doi.org/10.1016/j.phymed.2020.153452 |
[30] |
Van Broeckhoven, J., Sommer, D., Dooley, D., et al. (2021) Macrophage Phagocytosis after Spinal Cord Injury: When Friends Become Foes. Brain, 144, 2933-2945. https://doi.org/10.1093/brain/awab250 |
[31] |
Saremi, J., Mahmoodi, N., Rasouli, M., et al. (2022) Advanced Ap-proaches to Regenerate Spinal Cord Injury: The Development of Cell and Tissue Engineering Therapy and Combinational Treatments. Biomedicine & Pharmacotherapy 146, Article ID: 112529. https://doi.org/10.1016/j.biopha.2021.112529 |
[32] |
Bellver-Landete, V., Bretheau, F., Mailhot, B., et al. (2019) Mi-croglia Are an Essential Component of the Neuroprotective Scar That Forms after Spinal Cord Injury. Nature Communi-cations, 10, Article No. 518. https://doi.org/10.1038/s41467-019-08446-0 |
[33] |
Xu, L., Tang, Y.Y., Ben, X.L., et al. (2020) Ginsenoside Rg1-Induced Activation of Astrocytes Promotes Functional Recovery via the PI3K/Akt Signaling Pathway Following Spinal Cord Injury. Life Sciences, 252, Article ID: 117642. https://doi.org/10.1016/j.lfs.2020.117642 |
[34] |
Cheng, Y.Y., Zhao, H.K., Chen, L.W., et al. (2020) Reactive As-trocytes Increase Expression of proNGF in the Mouse Model of Contused Spinal Cord Injury. Neuroscience Research, 157, 34-43. https://doi.org/10.1016/j.neures.2019.07.007 |
[35] |
Cherchi, F., Bulli, I., Venturini, M., et al. (2021) Ion Channels as New Attractive Targets to Improve Re-Myelination Processes in the Brain. International Journal of Molecular Sciences, 22, Article No. 7277. https://doi.org/10.3390/ijms22147277 |
[36] |
Assinck, P., Duncan, G.J., Plemel, J.R., et al. (2017) Myelinogenic Plasticity of Oligodendrocyte Precursor Cells Following Spinal Cord Contusion Injury. Journal of Neuroscience, 37, 8635-8654. https://doi.org/10.1523/JNEUROSCI.2409-16.2017 |
[37] |
Ma, D., Wang, B., Zawadzka, M., et al. (2018) A Sub-population of Foxj1-Expressing, Nonmyelinating Schwann Cells of the Peripheral Nervous System Contribute to Schwann Cell Remyelination in the Central Nervous System. Journal of Neuroscience, 38, 9228-9239. https://doi.org/10.1523/JNEUROSCI.0585-18.2018 |
[38] |
Tsata, V., Kroehne, V., Reinhardt, S., et al. (2019) Elec-trophysiological Properties of Adult Zebrafish Oligodendrocyte Progenitor Cells. Frontiers in Cellular Neuroscience, 13, Article No. 102. https://doi.org/10.3389/fncel.2019.00102 |
[39] |
Barnabé-Heider, F., Göritz, C., Sabelström, H., et al. (2010) Origin of New Glial Cells in Intact and Injured Adult Spinal Cord. Cell Stem Cell, 7, 470-482. https://doi.org/10.1016/j.stem.2010.07.014 |
[40] |
Duncan, G.J., Manesh, S.B., Hilton, B.J., et al. (2020) The Fate and Function of Oligodendrocyte Progenitor Cells after Traumatic Spinal Cord Injury. Glia, 68, 227-245. https://doi.org/10.1002/glia.23706 |
[41] |
Antonios, J.P., Farah, G.J., Cleary, D.R., et al. (2019) Immunosuppressive Mechanisms for Stem Cell Transplant Survival in Spinal Cord Injury. Neurosurgical Focus, 46, E9. https://doi.org/10.3171/2018.12.FOCUS18589 |
[42] |
Mekhail, M., Almazan, G. and Tabrizian, M. (2012) Oli-godendrocyte-Protection and Remyelination Post-Spinal Cord Injuries: A Review. Progress in Neurobiology, 96, 322-339. https://doi.org/10.1016/j.pneurobio.2012.01.008 |
[43] |
Fan, H., Tang, H.B., Shan, L.Q., et al. (2019) Quercetin Prevents Necroptosis of Oligodendrocytes by Inhibiting Macrophages/Microglia Polarization to M1 Phenotype after Spinal Cord Injury in Rats. Journal of Neuroinflammation, 16, Article No. 206. https://doi.org/10.1186/s12974-019-1613-2 |
[44] |
Wang, H., Liu, C., Mei, X., et al. (2017) Berberine Attenuated Pro-Inflammatory Factors and Protect against Neuronal Damage via Triggering Oligodendrocyte Autophagy in Spinal Cord Injury. Oncotarget, 8, 98312-98321. https://doi.org/10.18632/oncotarget.21203 |
[45] |
Do Nascimento, R.P., De Jesus, L.B., Oliveira-Junior, M.S., et al. (2022) Agathisflavone as a Single Therapy or in Association with Mesenchymal Stem Cells Improves Tissue Repair in a Spinal Cord Injury Model in Rats. Frontiers in Pharmacology, 13, Article ID: 858190. https://doi.org/10.3389/fphar.2022.858190 |
[46] |
Franklin, R.J.M., Frisén, J. and Lyons, D.A. (2021) Revisiting Remyelination: Towards a Consensus on the Regeneration of CNS Myelin. Seminars in Cell & Developmental Biology, 116, 3-9. https://doi.org/10.1016/j.semcdb.2020.09.009 |
[47] |
Priest, C.A., Manley, N.C., Denham, J., et al. (2015) Preclinical Safety of Human Embryonic Stem Cell-Derived Oligodendrocyte Progenitors Supporting Clinical Trials in Spinal Cord Injury. Regenerative Medicine, 10, 939-958. https://doi.org/10.2217/rme.15.57 |
[48] |
Chen, H., Zhang, Y., Yang, Z., et al. (2013) Human Umbilical Cord Whar-ton’s Jelly-Derived Oligodendrocyte Precursor-Like Cells for Axon and Myelin Sheath Regeneration. Neural Regenera-tion Research, 8, 890-899. |
[49] |
Fu, H., Hu, D., Zhang, L., et al. (2018) Efficacy of Oligodendrocyte Progenitor Cell Transplantation in Rat Models with Traumatic Thoracic Spinal Cord Injury: A Systematic Review and Meta-Analysis. Journal of Neurotrauma, 35, 2507-2518. https://doi.org/10.1089/neu.2017.5606 |
[50] |
Yang, J., Xiong, L.L., Wang, Y.C., et al. (2018) Oligodendrocyte Precursor Cell Transplantation Promotes Functional Recovery Following Contusive Spinal Cord Injury in Rats and Is Associated with Altered microRNA Expression. Molecular Medicine Reports, 17, 771-782. https://doi.org/10.3892/mmr.2017.7957 |
[51] |
Jin, M.C., Medress, Z.A., Azad, T.D., et al. (2019) Stem Cell Therapies for Acute Spinal Cord Injury in Humans: A Review. Neurosurgical Focus, 46, E10. https://doi.org/10.3171/2018.12.FOCUS18602 |
[52] |
Yao, Z.F., Wang, Y., Lin, Y.H., et al. (2017) Transplantation of PDGF-AA-Overexpressing Oligodendrocyte Precursor Cells Promotes Recovery in Rat Following Spinal Cord Injury. Frontiers in Cellular Neuroscience, 11, Article No. 79. https://doi.org/10.3389/fncel.2017.00079 |
[53] |
Wilkins, A., Majed, H., Layfield, R., et al. (2003) Oligodendrocytes Promote Neuronal Survival and Axonal Length by Distinct Intracellular Mechanisms: A Novel Role for Oligodendro-cyte-Derived Glial Cell Line-Derived Neurotrophic Factor. Journal of Neuroscience, 23, 4967-4974. https://doi.org/10.1523/JNEUROSCI.23-12-04967.2003 |
[54] |
El Waly, B., Cayre, M. and Durbec, P. (2018) Pro-moting Myelin Repair through in Vivo Neuroblast Reprogramming. Stem Cell Reports, 10, 1492-1504. https://doi.org/10.1016/j.stemcr.2018.02.015 |
[55] |
Ding, Z., Dai, C., Zhong, L., et al. (2021) Neuregulin-1 Converts Reactive Astrocytes Toward Oligodendrocyte Lineage Cells via Upregulating the PI3K-AKT-mTOR Pathway to Repair Spinal Cord Injury. Biomedicine & Pharmacotherapy, 134, Article ID: 111168. https://doi.org/10.1016/j.biopha.2020.111168 |
[56] |
Pouya, A., Rassouli, H., Rezaei-Larijani, M., et al. (2020) SOX2 Protein Transduction Directly Converts Human Fibroblasts into Oligodendrocyte-Like Cells. Biochemical and Biophysical Research Communications. https://doi.org/10.1016/j.bbrc.2020.02.047 |
[57] |
Xu, Y., Zhou, J., Liu, C., et al. (2021) Understanding the Role of Tissue-Specific Decellularized Spinal Cord Matrix Hydrogel for Neural Stem/Progenitor Cell Microenvironment Recon-struction and Spinal Cord Injury. Biomaterials, 268, Article ID: 120596. https://doi.org/10.1016/j.biomaterials.2020.120596 |
[58] |
Zarepour, A., Hooshmand, S., Gökmen, A., et al. (2021) Spinal Cord Injury Management through the Combination of Stem Cells and Implantable 3D Bioprinted Platforms. Cells, 10, Article No. 3189. https://doi.org/10.3390/cells10113189 |
[59] |
Li, J., Ji, Z., Wang, Y., et al. (2022) Human Adipose-Derived Stem Cells Combined with Nano-Hydrogel Promote Functional Recovery after Spinal Cord Injury in Rats. Biology (Basel), 11, Article No. 781. https://doi.org/10.3390/biology11050781 |
[60] |
Liu, X., Hao, M., Chen, Z., et al. (2021) 3D Bioprinted Neural Tis-sue Constructs for Spinal Cord Injury Repair. Biomaterials, 272, Article ID: 120771. https://doi.org/10.1016/j.biomaterials.2021.120771 |
[61] |
Joung, D., Truong, V., Neitzke, C.C., et al. (2018) 3D Printed Stem-Cell Derived Neural Progenitors Generate Spinal Cord Scaffolds. Advanced Functional Materials, 28, Arti-cle ID: 1801850. https://doi.org/10.1002/adfm.201801850 |
[62] |
Nazari, B., Namjoo, Z., Moradi, F., et al. (2021) miR-219 Overexpressing Oligodendrocyte Progenitor Cells for Treating Compression Spinal Cord Injury. Metabolic Brain Disease, 36, 1069-1077. https://doi.org/10.1007/s11011-021-00701-y |
[63] |
Bai, G., Jiang, L., Meng, P., et al. (2021) LncRNA Neat1 Pro-motes Regeneration after Spinal Cord Injury by Targeting miR-29b. Journal of Molecular Neuroscience, 71, 1174-1184. https://doi.org/10.1007/s12031-020-01740-3 |
[64] |
Li, F., Zhou, M.W., Liu, N., et al. (2019) MicroRNA-219 Inhib-its Proliferation and Induces Differentiation of Oligodendrocyte Precursor Cells after Contusion Spinal Cord Injury in Rats. Neural Plasticity, 2019, Article ID: 9610687. https://doi.org/10.1155/2019/9610687 |
[65] |
Manley, N.C., Priest, C.A., Denham, J., et al. (2017) Human Embry-onic Stem Cell-Derived Oligodendrocyte Progenitor Cells: Preclinical Efficacy and Safety in Cervical Spinal Cord Injury. Stem Cells Translational Medicine, 6, 1917- 1929. https://doi.org/10.1002/sctm.17-0065 |
[66] |
Bradbury, E.J. and Burnside, E.R. (2019) Moving beyond the Glial Scar for Spinal Cord Repair. Nature Communications, 10, Article No. 3879. https://doi.org/10.1038/s41467-019-11707-7 |
[67] |
Spaas, J., Van Veggel, L., Schepers, M., et al. (2021) Oxidative Stress and Impaired Oligodendrocyte Precursor Cell Differentiation in Neurological Disorders. Cellular and Molecular Life Sciences, 78, 4615-4637. https://doi.org/10.1007/s00018-021-03802-0 |