[1]
|
Krajinović, I., Daves, W., Tkadletz, M., et al. (2016) Finite Element Study of the Influence of Hard Coatings on Hard Metal Tool Loading during Milling. Surface and Coatings Technology, 304, 134-141.
https://doi.org/10.1016/j.surfcoat.2016.06.041
|
[2]
|
Kathrein, M., Michotte, C., Penoy, M., et al. (2005) Multifunc-tional Multi-Component PVD Coatings for Cutting Tools. Surface & Coatings Technology, 200, 1867-1871. https://doi.org/10.1016/j.surfcoat.2005.08.105
|
[3]
|
Mayrhofer, P.H., Mitterer, C., Hultman, L., et al. (2006) Mi-crostructural Design of Hard Coatings. Progress in Materials Science, 51, 1032-1114. https://doi.org/10.1016/j.pmatsci.2006.02.002
|
[4]
|
Mitterer, C. (2014) PVD and CVD Hard Coatings. In: Sarin, V.K., Llanes, L. and Mari, D., Eds., Comprehensive Hard Materials, Elsevier, Amsterdam, 449-467. https://doi.org/10.1016/B978-0-08-096527-7.00035-0
|
[5]
|
Schleinkofer, U., Czettl, C. and Michotte, C. (2014) Coating Applications for Cutting Tools. In: Sarin, V.K., Ed., Comprehensive Hard Materials, Elsevier, Amsterdam, 453-469.
https://doi.org/10.1016/B978-0-08-096527-7.00016-7
|
[6]
|
吴笛. 物理气相沉积技术的研究进展与应用[J]. 机械工程与自动化, 2011(4): 214-216.
|
[7]
|
胡昌义, 李靖华. 化学气相沉积技术与材料制备[J]. 稀有金属, 2001, 25(5): 364-368.
|
[8]
|
何玉定, 胡社军, 谢光荣. TiN涂层应用及研究进展[J]. 广东工业大学学报, 2005, 22(2): 31-36.
|
[9]
|
许建平, 王佳杰, 齐海群, 等. 电磁场增强多弧离子镀AlTiN涂层抗高温氧化研究[J]. 哈尔滨工程大学学报, 2021, 42(5): 738-744.
|
[10]
|
姜涛. 偏压对AlTiN涂层的物性及车削GH4169性能的影响[J]. 表面技术, 2021, 49(12): 330-335.
|
[11]
|
黄美东, 许世鹏, 刘野, 等. 负偏压对电弧离子镀复合TiAlN薄膜的影响[J]. 表面技术, 2012(6): 1, 2, 3, 6.
|
[12]
|
陈锋光, 孙丽丽, 成浩, 等. 阴极电弧制备TiAlN薄膜工艺参数的正交分析研究[J]. 中国表面工程, 2011, 24(2): 41-45.
|
[13]
|
Hörling, A., Hultman, L., Odén, M., et al. (2002) Thermal Stability of Arc Evaporated High Aluminum-Content Ti1−xAlxN Thin Films. Journal of Vacuum Science & Technology A, 20, 1815-1823. https://doi.org/10.1116/1.1503784
|
[14]
|
Paldey, S. and Deevi, S. (2003) Single Layer and Multilayer Wear Resistant Coatings of (Ti, Al)N: A Review. Materials Science and Engineering: A, 342, 58-79. https://doi.org/10.1016/S0921-5093(02)00259-9
|
[15]
|
Kimura, A., Hasegawa, H., Yamada, K., et al. (1999) Effects of Al Content on Hardness, Lattice Parameter and Microstructure of Ti1−xAlxN Films. Surface and Coatings Technology, 120-121, 438-441.
https://doi.org/10.1016/S0257-8972(99)00491-0
|
[16]
|
Kutschej, K., Mayrhofer, P.H., Kathrein, M., et al. (2005) Structure, Mechanical and Tribological Properties of Sputtered Ti1−xAlxN Coatings with 0.5 ≤ x ≤ 0.75. Surface and Coatings Technology, 200, 2358-2365.
https://doi.org/10.1016/j.surfcoat.2004.12.008
|
[17]
|
Schalk, N., Mitterer, C., Keckes, J., et al. (2012) Influence of Residual Stresses and Grain Size on the Spinodal Decomposition of Metastable Ti1−xAlxN Coatings. Surface and Coat-ings Technology, 209, 190-196.
https://doi.org/10.1016/j.surfcoat.2012.08.052
|
[18]
|
Liu, S., Chang, K., Music, D., et al. (2020) Stress-Dependent Prediction of Metastable Phase Formation for Magnetron-Sputtered V1−xAlxN and T1−xAlxN Thin Films. Acta Materialia, 196, 313-324.
https://doi.org/10.1016/j.actamat.2020.06.044
|
[19]
|
Wüstefeld, C., Rafaja, D., Klemm, V., et al. (2010) Effect of the Aluminium Content and the Bias Voltage on the Microstructure Formation in T1−xAlxN Protective Coatings Grown by Cathodic Arc Evaporation. Surface and Coatings Technology, 205, 1345-1349. https://doi.org/10.1016/j.surfcoat.2010.07.057
|
[20]
|
Grossmann, B., Schalk, N., Czettl, C., et al. (2017) Phase Composition and Thermal Stability of Arc Evaporated T1−xAlxN Hard Coatings with 0.4 ≤ x ≤ 0.67. Surface and Coat-ings Technology, 309, 687-693.
https://doi.org/10.1016/j.surfcoat.2016.11.015
|
[21]
|
Petrov, I., Barna, P., Hultman, L., et al. (2003) Microstructural Evolution during Film Growth. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 21, S117-S128. https://doi.org/10.1116/1.1601610
|
[22]
|
Das, S., Guha, S., Ghadai, R., et al. (2021) A Comparative Analysis over Different Properties of TiN, TiAlN and TiAlSiN Thin Film Coatings Grown in Nitrogen Gas Atmosphere. Materials Chemistry and Physics, 258, Article ID: 123866. https://doi.org/10.1016/j.matchemphys.2020.123866
|
[23]
|
Kumar, C.S. and Patel, S.K. (2018) Performance Analy-sis and Comparative Assessment of Nano-Composite TiAlSiN/TiSiN/TiAlN Coating in Hard Turning of AISI 52100 Steel. Surface and Coatings Technology, 335, 265-279.
https://doi.org/10.1016/j.surfcoat.2017.12.048
|
[24]
|
Sousa, V.F., Silva, F., Alexandre, R., et al. (2021) Study of the Wear Behaviour of TiAlSiN and TiAlN PVD Coated Tools on Milling Operations of Pre-Hardened Tool Steel. Wear, 476, Article ID: 203695.
https://doi.org/10.1016/j.wear.2021.203695
|
[25]
|
Knotek, O., Löffler, F., Bosserhoff, B., et al. (1993) PVD Coat-ings for Diecasting Moulds. Surface and Coatings Technology, 62, 630-634. https://doi.org/10.1016/0257-8972(93)90310-K
|
[26]
|
Panjan, P., Navinšek, B., Cvelbar, A., et al. (1996) Oxidation of TiN, ZrN, TiZrN, CrN, TiCrN and TiN/CrN Multilayer Hard Coatings Reactively Sputtered at Low Temperature. Thin Solid Films, 281-282, 298-301.
https://doi.org/10.1016/0040-6090(96)08663-4
|
[27]
|
Sant, S. and Gill, K. (1994) Growth and Characterization of Cathodic Arc Evaporated CrN, (TiAl)N and (TiZr)N Films. Surface & Coatings Technology, 68, 152-156. https://doi.org/10.1016/0257-8972(94)90153-8
|
[28]
|
Bin-Sudin, M., Leyland, A., James, A., et al. (1996) Substrate Surface Finish Effects in Duplex Coatings of PAPVD TiN and CrN with Electroless Nickel-Phosphorus Interlayers. Surface and Coatings Technology, 81, 215-224.
https://doi.org/10.1016/0257-8972(95)02529-4
|
[29]
|
Brizuela, M., Garcia-Luis, A., Braceras, I., et al. (2005) Mag-netron Sputtering of Cr(Al)N Coatings: Mechanical and Tribological Study. Surface and Coatings Technology, 200, 192-197. https://doi.org/10.1016/j.surfcoat.2005.02.105
|
[30]
|
Tlili, B., Mustapha, N., Nouveau, C., et al. (2010) Correlation between Thermal Properties and Aluminum Fractions in CrAlN Layers Deposited by PVD Technique. Vac-uum, 84, 1067-1074. https://doi.org/10.1016/j.vacuum.2010.01.011
|
[31]
|
Ghrib, T., Tlili, B., Nouveau, C., et al. (2009) Experimental Investigation of the Mechanical Micro Structural and Thermal Properties of Thin CrAIN Layers Deposited by PVD Technique for Various Aluminum Percentages. Physics Procedia, 2, 1327-1336. https://doi.org/10.1016/j.phpro.2009.11.099
|
[32]
|
Banakh, O., Schmid, P., Sanjines, R., et al. (2003) High-Temperature Oxidation Resistance of Cr1−xAlxN Thin Films Deposited by Reactive Magnetron Sputtering. Surface & Coatings Technology, 163, 57-61.
https://doi.org/10.1016/S0257-8972(02)00589-3
|
[33]
|
Ulrich, S., Holleck, H., Ye, J., et al. (2003) Influence of Low Energy Ion Implantation on Mechanical Properties of Magnetron Sputtered Metastable (Cr, Al)N Thin Films. Thin Solid Films, 437, 164-169.
https://doi.org/10.1016/S0040-6090(03)00595-9
|
[34]
|
Uchida, M., Nihira, N., Mitsuo, A., et al. (2004) Friction and Wear Properties of CrAlN and CrVN Films Deposited by Cathodic Arc Ion Plating Method. Surface and Coatings Technology, 177, 627-630.
https://doi.org/10.1016/S0257-8972(03)00937-X
|
[35]
|
Bunsha, R. (1982) Deposition Technologies for Films and Coatings: Developments and Applications. Noyes Publications, New York.
|
[36]
|
Ohring, M. (2001) Materials Science of Thin Films: Deposition & Structure. Elsevier, Amsterdam.
https://doi.org/10.1016/B978-012524975-1/50012-4
|
[37]
|
王福贞, 刘欢, 那日松. 离子镀膜技术的进展[J]. 真空, 2014, 51(5): 1-8.
|
[38]
|
Beliardouh, N.E., Bouzid, K., Nouveau, C., et al. (2015) Tribological and Electrochemical Performances of Cr/CrN and Cr/CrN/CrAlN Multilayer Coatings Deposited by RF Magnetron Sputtering. Tribology In-ternational, 82, 443-452.
https://doi.org/10.1016/j.triboint.2014.03.018
|
[39]
|
Boxman, R.L., Sanders, D. and Martin, P.J. (1996) Handbook of Vacuum Arc Science & Technology: Fundamentals and Applications. William Andrew, Norwich.
|
[40]
|
Samim, P.M., Fattah-Alhosseini, A., Elmkhah, H., et al. (2020) A Study on Comparing Surface Characterization and Electrochemical Properties of Single-Layer CrN Coating with Nanostructured Multilayer ZrN/CrN Coating in 3.5 wt.% NaCl Solution. Surfaces and Interfaces, 21, Article ID: 100721. https://doi.org/10.1016/j.surfin.2020.100721
|
[41]
|
Nalwa, H.S. (2001) Handbook of Surfaces and Interfaces of Materials, Five-Volume Set. Elsevier, Amsterdam.
https://doi.org/10.1016/B978-012513910-6/50003-7
|
[42]
|
Shiravi Khoozani, J., Hosseini, S.H. and Fordoei, M. (2020) Comparison of the Effect of Arched and through Magnetic Field Configurations in Cathodic Arc Deposition. Surface Engineering, 36, 547-552.
https://doi.org/10.1080/02670844.2019.1653598
|
[43]
|
Anders, A. (2008) Cathodic Arcs: From Fractal Spots to Energetic Condensation. Springer, Berlin.
https://doi.org/10.1007/978-0-387-79108-1
|
[44]
|
Sanders, D.M. and Anders, A. (2000) Review of Cathodic Arc Deposition Technology at the Start of the New Millennium. Surface and Coatings Technology, 133, 78-90. https://doi.org/10.1016/S0257-8972(00)00879-3
|
[45]
|
Tkadletz, M., Mitterer, C., Sartory, B., et al. (2014) The Ef-fect of Droplets in Arc Evaporated TiAlTaN Hard Coatings on the Wear Behavior. Surface & Coatings Technology, 257, 95-101. https://doi.org/10.1016/j.surfcoat.2014.01.010
|
[46]
|
Window, B. (1996) Issues in Magnetron Sputtering of Hard Coatings. Surface and Coatings Technology, 81, 92-98.
https://doi.org/10.1016/0257-8972(95)02620-7
|
[47]
|
Mattox, D.M. (2010) Handbook of Physical Vapor Deposition (PVD) Processing. William Andrew, Norwich.
https://doi.org/10.1016/B978-0-8155-2037-5.00008-3
|
[48]
|
De Lodyguine, J. (1893) Illuminant for Incandescent Lamps.
|
[49]
|
Choy, K. (2003) Chemical Vapour Deposition of Coatings. Progress in Materials Science, 48, 57-170.
https://doi.org/10.1016/S0079-6425(01)00009-3
|
[50]
|
Glocker, D.A., Shah, S.I. and Morgan, C.A. (1995) Hand-book of Thin Film Process Technology. Institute of Physics Bristol, Bristol.
|
[51]
|
Goldstein, A. (1997) Handbook of Nanophase Materials. CRC Press, Boca Raton.
|
[52]
|
Kern, W. (2012) Thin Film Processes II. Elsevier, Amster-dam.
|
[53]
|
Rie, K.-T., Gebauer, A., Wöhle, J.J.S., et al. (1996) Plasma Assisted CVD for Low Temperature Coatings to Improve the Wear and Corrosion Resistance. Surface and Coatings Technology, 86, 498-506.
https://doi.org/10.1016/S0257-8972(96)03177-5
|
[54]
|
Rie, K.-T., Gebauer, A. and Pfohl, C. (1995) Deposition of Boron Containing Coatings Using MO-PACVD Process to Protect Aluminium Casting Tools. Journal de Physique IV Proceedings, EDP Sciences, 5, C5-637-C5-45.
https://doi.org/10.1051/jphyscol:1995576
|
[55]
|
Hartmann, P., Haubner, R., Lux, B., et al. (1998) Characteristics of a Pulsed DC-Glow Discharge CVD Reactor for Deposition of Thick Diamond Films. International Journal of Refractory Metals and Hard Materials, 16, 207-216.
https://doi.org/10.1016/S0263-4368(98)00020-1
|