一类混沌神经网络的研究
Study on a Class of Chaotic Neural Networks
摘要:本文研究了延迟混沌神经网络的同步问题,引入一种新的自适应反馈控制器(包括状态相合控制和延迟状态相合控制),利用李雅普诺夫泛函研究了变系数情形下系统的同步性。最后利用数值模拟 验证了结论的有效性。
Abstract:This paper is concerned with the synchronization of the delayed chaotic neural net-works, it has a new adaptive feedback controller which includes state coupling control and delayed state coupling control. We study the case where the system is a variable coefficient. Also we discuss the stability conditions of synchronization by constructing a new Lyapunov functional. Example and numerical simulation are given to illustrate the effectiveness of the results.
文章引用:刘宝生, 郭龄玉. 一类混沌神经网络的研究[J]. 应用数学进展, 2022, 11(8): 6099-6106. https://doi.org/10.12677/AAM.2022.118642

参考文献

[1] Qiao, Z.M., Cheng, J.X. and Song, J. (2007) Global Synchronization of Delayed Chaotic Neural Networks Based on LMI Approach. 2007 IEEE International Conference on Control and Automation, Guangzhou, 30 May-1 June 2007, 276-280.
https://doi.org/10.1109/ICCA.2007.4376362
[2] Cai, G.L., Shao, H.J. and Yao, Q. (2011) Notice of Retraction: Global Synchronization of Delayed Chaotic Neural Networks. The Seventh International Conference on Natural Compu-tation, Shanghai, 26-28 July 2011, 358-361.
[3] Zheng, Z.G. and Hu, G. (2000) Generalized Synchronization versus Phase Synchronization. Physical Review E, 62, 7882.
https://doi.org/10.1103/PhysRevE.62.7882
[4] Wang, S.G., Yao, H.X., Zheng, S. and Xie, Y. (2012) A Novel Criterion for Cluster Synchroniza-tion of Complex Dynamical Networks with Coupling Time-Varying Delays. Communications in Nonlinear Science and Numerical Simulation, 17, 2997-3004.
https://doi.org/10.1016/j.cnsns.2011.10.036
[5] Lu, W. and Chen, T. (2004) Synchronization Analysis of Linearly Coupled Networks of Discrete Time Systems. Physica D: Nonlinear Phenomena, 198, 148-168.
https://doi.org/10.1016/j.physd.2004.08.024
[6] Lu, W. and Chen, T. (2006) New Approach to Synchronization Analysis of Linearly Coupled Ordinary Di_erential Systems. Physica D: Nonlinear Phenomena, 213, 214-230.
https://doi.org/10.1016/j.physd.2005.11.009
[7] Li, X., Leung, A.C., Han, X., Liu, X. and Chu, Y. (2011) Complete (Anti-)Synchronization of Chaotic Systems with Fully Uncertain Parameters by Adaptive Control. Nonlinear Dynamics, 63, 263-275.
https://doi.org/10.1007/s11071-010-9802-7
[8] Zhang, G., Shen, Y. and Wang, L. (2013) Global Anti-Synchronization of a Class of Chaotic Memristive Neural Networks with Time-Varying Delays. Neural Networks, 46, 1-8.
https://doi.org/10.1016/j.neunet.2013.04.001
[9] Zhao, H., Li, L., Peng, H., Kurths, J., Xiao, J. and Yang, Y. (2015) Anti-Synchronization for Stochastic Memristor-Based Neural Networks with Non-Modeled Dynamics via Adaptive Control Approach. The European Physical Journal B, 88, Article No. 109.
https://doi.org/10.1140/epjb/e2015-50798-9
[10] Sun, J.T. (2004) Some Global Synchronization Criteria for Coupled Delay-Systems via Unidi-rectional Linear Error Feedback Approach. Chaos, Solitons and Fractals, 19, 789-794.
https://doi.org/10.1016/S0960-0779(03)00207-8
[11] Cui, B.T. and Lou, X.Y. (2009) Synchronization of Chaotic Recurrent Neural Networks with Time-Varying Delays Using Nonlinear Feedback Control. Chaos, Solitons and Fractals, 39, 288-294.
https://doi.org/10.1016/j.chaos.2007.01.100
[12] Guo, W.L., Austin, F. and Chen, S.H. (2010) Global Synchronization of Nonlinearly Coupled Complex Networks with Non-Delay and Delayed Coupling. Communications in Nonlinear Sci-ence and Numerical Simulation, 15, 1631-1639.
https://doi.org/10.1016/j.cnsns.2009.06.016
[13] Ding, W. and Han, M.A. (2008) Synchronization of Fuzzy Cellular Neural Networks Based on Adaptive Control. Physics Letters A, 372, 4674-4681.

为你推荐



Baidu
map