[1] |
Saber, K., Nahla, L., Ahmed, D., et al. (2005) Effect of P on Nodule Formation and N Fixation in Bean. Agronomy for Sustainable Development, 25, 389-393. |
[2] |
Wen, W.J., Zhuang, Y.H., Zhang, L., et al. (2021) Preferred Hierarchical Control Strategy of Phosphorus from Non- Point Source Pollution at Regional Scale. Environmental Science and Pollu-tion Research (International), 28, 60111- 60121. https://doi.org/10.1007/s11356-021-14138-4 |
[3] |
El-Gawad, A.M.A., Hendawey, M.H. and Farag, H.I.A. (2009) Interaction between Biofertilization and Canola Genotypes in Rela-tion to Some Biochemical Constituents under Siwa Oasis Conditions. Research Journal of Agriculture and Biological Sciences, 5, 82-96. |
[4] |
Rivas, R., Peix, A., Mateos, P.F., et al. (2006) Biodiversity of Populations of Phosphate Solu-bilizing Rhizobia That Nodulates Chickpea in Different Spanish Soils. Plant and Soil, 287, 23-33. https://doi.org/10.1007/s11104-006-9062-y |
[5] |
王向向, 陈静宇, 曹旭, 孟利强, 刘志庭, 张烨, 李萌, 于德水. 土壤溶磷微生物的研究进展及应用[J]. 农业科学, 2022, 12(6): 453-458. |
[6] |
Han, S.H., Kim, C.H., Lee, J.H., Paris, J.Y., Cho, S.M., Park, S.K., et al. (2008) Inactivation of pqq Genes of Enterobacter intermedium 60-2G Reduces Antifungal Activity and Induction of Systemic Resistance. FERNS Microbiology Letters, 282, 140-146. https://doi.org/10.1111/j.1574-6968.2008.01120.x |
[7] |
Goldstein, A.H. and Liu, S.T. (1987) Molecular Cloning and Regulation of a Mineral Phosphate Solubilizing Gene from Erwinia herbicola. Biotechnology, 5, 72-74. https://doi.org/10.1038/nbt0187-72 |
[8] |
Kim, K.Y., Jordan, D. and Krishinan, H.G. (1998) Expression of Genes from Ranella apuatilis That Are Necessary for Mineral Phosphate Solubilization in Escherichia coli. FEMS Microbiology Letters, 159, 121-127. https://doi.org/10.1016/S0378-1097(97)00558-2 |
[9] |
Cleton-Jansen, A.M., Goosen, N., Fayet, O. and van, P. (1990) Cloning, Mapping, and Sequencing of the Gene Encoding Escherichia coli Quinoprotein Glucose Dehydrogen-ase. The Journal of Applied Bacteriology, 172, 6308-6315. https://doi.org/10.1128/jb.172.11.6308-6315.1990 |
[10] |
Goldstein, A.H., Braverman, K. and Osorio, N. (1999) Evidence for Mutualism between a Plant Growing in a Phosphate-Limited Desert Environment and a Mineral Phosphate Solubilizing (MPS) Rhizobacterium. FEMS Microbiology Ecology, 30, 295-300. https://doi.org/10.1111/j.1574-6941.1999.tb00657.x |
[11] |
Li, L., Jiao, Z.W., Lauren, H., et al. (2014) Disruption of Gene pqqA or pqqB Reduces Plant Growth Promotion Activity and Biocontrol of Grown Galldisease by Rahnella aquatilis HX2. PLOS ONE, 9, e115010. https://doi.org/10.1371/journal.pone.0115010 |
[12] |
杨晓玫. 珠芽蓼根际促生菌Bacillus mycoides Gnyt1比较基因组及其功能基因研究[D]: [博士学位论文]. 兰州: 甘肃农业大学, 2020. |
[13] |
焦子伟, 张相锋, 努尔买买提, 任艳利, 吾尔恩, 郭岩彬. pqq基因簇在Escherichia coli DH5α中表达及对其溶磷促生的影响[J]. 农业资源与环境学报, 2016, 33(1): 43-48. |
[14] |
李欣, 张磊, 胡景江. 拐枣七内生细菌溶磷相关基因的鉴定[J]. 西北植物学报, 2017, 37(8): 1500-1506. |
[15] |
陈炯宇, 覃英, 谢显秋, 黄毓燕, 董登峰, 邢永秀, 李杨瑞. 甘蔗内生固氮菌Klebsiella variicola DX120E溶磷基因GDH和pqqE的克隆及溶磷特性分析[J]. 热带作物学报, 2021, 42(10): 2819-2827. |
[16] |
Sashidhar, B. and Podile, A.R. (2010) Mineral Phosphate Solubilization by Rhizosphere Bacteria and Scope for Manipulation of the Direct Oxidation Pathway Involving Glucose Dehydrogenase. Journal of Applied Micro-biology, 109, 1-12. https://doi.org/10.1111/j.1365-2672.2009.04654.x |
[17] |
Tripura, C., Sashidhar, B. and Podile, A. (2005) Transgenic Mineral Phosphate Solubilizing Bacteria for Improved Agricultural Productivity. In: Satyanarayana, T. and Johri, B.N., Eds., Microbial Diversity Current Perspectives and Potential Applications, West Sussex, West Sus-sex, 375-392. |
[18] |
Pérez, E., Sulbarán, M., Ball, M.M., et al. (2007) Isolation and Characterization of Mineral Phos-phate-Solubilizing Bacteria Naturally Colonizing a Limonitic Crust in the South-Eastern Venezuelan Region. Soil Biology and Biochemistry, 39, 2905-2914. https://doi.org/10.1016/j.soilbio.2007.06.017 |
[19] |
Suleman, M., Yasmin, S., Rasul, M., et al. (2018) Phosphate Solubilizing Bacteria with Glucose Dehydrogenase Gene for Phosphorus Uptake and Beneficial Effects on Wheat. PLOS ONE, 13, e0204408. https://doi.org/10.1371/journal.pone.0204408 |
[20] |
Babu-khan, S., Yeo, T.H. and Martin, W. (1995) Cloning of a Mineral Phosphate-Solubilizing Gene from Pseudomonas cepacia. Applied and Environmental Microbiology, 61, 972-981. https://doi.org/10.1128/aem.61.3.972-978.1995 |
[21] |
赵珂. 溶磷菌YM3-2S溶磷特性及溶磷基因的克隆[D]: [硕士学位论文]. 成都: 四川农业大学, 2007. |
[22] |
吕军. 转基因烟草对土壤磷吸收利用的研究[D]: [博士学位论文]. 大连: 大连理工大学, 2011. |
[23] |
张健. 低磷胁迫下草酸青霉菌BK溶磷的分子机制[D]: [硕士学位论文]. 大连: 大连理工大学, 2014. |
[24] |
Thaller, M.C., Berlutti, F., Schippa, S., et al. (1994) Characterization and Se-quence of PhoC, the Principal Phosphate- Irrepressible Acid Phosphatase of Morganella morgani. Microbiology, 140, 1341-1350. https://doi.org/10.1099/00221287-140-6-1341 |
[25] |
Fraga, R., Rodríguez, H. and González, T. (2001) Transfer of the Gene Encoding the Napa Acid Phosphatase from Morganella morganii to a Burkholderia cepacia Strain. Acta Bio-technologica, 21, 359-369. https://doi.org/10.1002/1521-3846(200111)21:4<359::AID-ABIO359>3.0.CO;2-B |
[26] |
Feng, K., Lu, H.M., Sheng, H.J., Wang, X.L. and Mao, J. (2004) Effect of Organic Ligands on Biological Avail Ability of Inorganic Phos-phorus in Soils. Pedosphere, 14, 85-92. |
[27] |
Wanner, B.L. and McSharry, R. (1982) Phosphate Controlled Gene Ex-pression in E. coli K12 Using Mudl-Directed LacZ Fusions. Molecular Biology, 158, 347-363. https://doi.org/10.1016/0022-2836(82)90202-9 |
[28] |
熊梦霞, 廖华媛, 郑金, 何景锋, 曹锟, 余兴龙. 一株产高酶活性碱性磷酸酶解淀粉芽孢杆菌的分离及其phoD碱性磷酸酶基因的克隆与表达[J]. 微生物学通报, 2022, 49(2): 505-513. |
[29] |
郎明, 李佳颖, 苏卫华, 邹温馨, 刘于, 陈新平. 长期施磷对石灰性土壤中编码碱性磷酸酶基因的细菌群落的影响[J]. 微生物学报, 2022, 62(1): 242-258. |
[30] |
Zhu, Y.P., Zhang, P.P., Lu, T., et al. (2021) Im-pact of MtrA on Phosphate Metabolism Genes and the Response to Altered Phosphate Conditions in Streptomyces. En-vironmental Microbiology, 23, 6907-6923. https://doi.org/10.1111/1462-2920.15719 |
[31] |
Martín, J.F., Liras, P., et al. (2021) Molecular Mechanisms of Phosphate Sensing, Transport and Signalling in Streptomyces and Related Actinobacteria. International Journal of Mo-lecular Sciences, 22, Article No. 1129. https://doi.org/10.3390/ijms22031129 |
[32] |
唐超西, 龚明波, 李顺鹏, 朱昌雄. 草酸青霉菌I1的cDNA文库构建及其溶磷相关基因的筛选[J]. 中国农业科学, 2012, 45(18): 3792-3800. |
[33] |
唐超西, 龚明波, 李顺鹏, 朱昌雄. 黑曲霉H1的cDNA文库构建及其溶磷相关基因的筛[J]. 微生物学报, 2012, 52(3): 311-317. |
[34] |
龚明波. 溶磷微生物分离、应用及其相关基因的克隆与功能鉴定[D]: [博士学位论文]. 北京: 中国农业科学院, 2011. |
[35] |
殷中伟. 真菌溶磷相关基因的克隆与功能分析[D]: [博士学位论文]. 北京: 中国农业大学, 2015. |
[36] |
Liu, C.J., Mou, L., Yi, J.L., et al. (2019) The Eno Gene of Burkholderia cenocepacia Strain 71-2 Is Involved in Phosphate Solubilization. Current Microbiology, 76, 495-502. https://doi.org/10.1007/s00284-019-01642-7 |