[1] |
王晶波, 熊丽琼. 中医药治疗哮喘的研究概述[J]. 辽宁中医杂志, 2022, 49(4): 218-220. |
[2] |
侯新, 赵文娟. 从五脏论治哮喘的发病和作用机制[J]. 中国药物经济学, 2022, 17(1): 125-128. |
[3] |
丁佩兰. 山豆根和苦参化学成分的比较研究[D]: [博士学位论文]. 上海: 复旦大学, 2004. |
[4] |
孟丽萍. 基于古今药方纵横的山豆根应用规律研究[D]: [硕士学位论文]. 济南: 山东中医药大学, 2013. |
[5] |
Yoo, H., Kang, M., Pyo, S., et al. (2017) SKI3301, a Purified Herbal Extract from Sophora tonkinensis, Inhibited Airway Inflammation and Bronchospasm in Allergic Asthma Animal Models in Vivo. Journal of Ethnopharmacology, 206, 298-305. https://doi.org/10.1016/j.jep.2017.05.012 |
[6] |
余丹, 迟骁玮. 基于生物信息学技术探讨补骨脂致肝损伤的作用机制[J]. 药学实践杂志, 2022, 40(3): 254-258. |
[7] |
刘嫣然, 施春英, 李玲. 基于生物信息学探讨芍药甘草汤作用机制[J]. 青岛大学学报(自然科学版), 2021, 34(3): 63-70. |
[8] |
Dahgam, S., Nyberg, F., Modig, L., et al. (2012) Single Nucleotide Polymorphisms in the NOS2 and NOS3 Genes Are Associated with Exhaled Nitric Oxide. Journal of Medical Genetics, 49, 200-205. https://doi.org/10.1136/jmedgenet-2011-100584 |
[9] |
Storm van’s, G.K., Wechsler, M., Grasemann, H., et al. (2003) Association of a Missense Mutation in the NOS3 Gene with Exhaled Nitric Oxide Levels. American Journal of Respiratory and Critical Care Medicine, 168, 228-231. https://doi.org/10.1164/rccm.200212-1491BC |
[10] |
Wu, M., Yang, J., Liu, T., et al. (2022) Effect of SRC Tyrosine Kinase on a Rat Model of Asthma. Experimental and Therapeutic Medicine, 23, 172. https://doi.org/10.3892/etm.2021.11095 |
[11] |
Wang, L., Xu, J., Liu, H., et al. (2019) PM2.5 Inhibits SOD1 Ex-pression by Up-Regulating microRNA-206 and Promotes ROS Accumulation and Disease Progression in Asthmatic Mice. International Immunopharmacology, 76, Article ID: 105871. https://doi.org/10.1016/j.intimp.2019.105871 |
[12] |
Qu, J., Li, Y., Zhong, W., et al. (2017) Recent Developments in the Role of Reactive Oxygen Species in Allergic Asthma. Journal of Thoracic Disease, 9, E32-E43. https://doi.org/10.21037/jtd.2017.01.05 |
[13] |
Molenaar, R.J., Maciejewski, J.P., Wilmink, J.W., et al. (2018) Wild-Type and Mutated IDH1/2 Enzymes and Therapy Responses. Oncogene, 37, 1949-1960. https://doi.org/10.1038/s41388-017-0077-z |
[14] |
Chan, I.H., Tang, N.L., Leung, T.F., et al. (2007) Association of Prostaglandin-Endoperoxide Synthase 2 Gene Polymorphisms with Asthma and Atopy in Chinese Children. Allergy, 62, 802-809. https://doi.org/10.1111/j.1398-9995.2007.01400.x |
[15] |
Taha, R., Olivenstein, R., Utsumi, T., et al. (2000) Prosta-glandin H Synthase 2 Expression in Airway Cells from Patients with Asthma and Chronic Obstructive Pulmonary Dis-ease. American Journal of Respiratory and Critical Care Medicine, 161, 636-640. https://doi.org/10.1164/ajrccm.161.2.9811063 |
[16] |
李英, 罗银河, 王孟清, 等. 咳喘宁对病毒诱发哮喘模型大鼠CD4+、CD8+ T细胞内信号转导子和转录激活子6表达的影响[J]. 中国中医药信息杂志, 2013, 20(10): 25-28. |
[17] |
Zheng, Y., Zhang, R., Shi, W., Li, L., Liu, H., et al. (2020) Metabolism and Pharmacological Activities of the Natural Health-Benefiting Compound Diosmin. Food & Function, 11, 8472-8492. https://doi.org/10.1039/D0FO01598A |
[18] |
程安琪, 佟训靓, 王辰. 吸烟与支气管哮喘研究进展[J]. 中华临床免疫和变态反应杂志, 2019, 13(1): 60-66. |
[19] |
Petruczynik, A., Wróblewski, K., Misiurek, J., et al. (2020) Determi-nation of Cytisine and N-Methylcytisine from Selected Plant Extracts by High-Performance Liquid Chromatography and Comparison of Their Cytotoxic Activity. Toxins (Basel), 12, 557. https://doi.org/10.3390/toxins12090557 |
[20] |
Tzankova, V. and Danchev, N. (2014) Cytisine—From Ethomedical Use to the Development as a Natural Alternative for Smoking Cessation. Biotechnology & Biotechnological Equipment, 21, 151-160. https://doi.org/10.1080/13102818.2007.10817436 |
[21] |
雷永红. 支气管哮喘发病机制中细胞因子作用的研究[J]. 九江学院学报(自然科学版), 2013, 28(1): 72-74. |
[22] |
齐玲, 王玮瑶, 张艳春, 等. 肿瘤坏死因子α信号传导通路在儿童哮喘发病机制中的作用[J]. 吉林大学学报(医学版), 2015, 41(2): 379-382. |
[23] |
邓同乐, 吕光荣, 管建红. 一氧化氮在哮喘发病机制中的作用及治疗应用[J]. 云南中医学院学报, 2001(2): 28-31. |
[24] |
Jiao, H.Y., Su, W.W., Li, P.B., Liao, Y., et al. (2015) Therapeutic Effects of Naringin in a Guinea Pig Model of Ovalbumin-Induced Cough-Variant Asthma. Pulmonary Pharmacology & Therapeutics, 33, 59-65. https://doi.org/10.1016/j.pupt.2015.07.002 |
[25] |
Maarsingh, H., Zaagsma, J. and Meurs, H. (2008) Arginine Ho-meostasis in Allergic Asthma. European Journal of Pharmacology, 585, 375-384. https://doi.org/10.1016/j.ejphar.2008.02.096 |
[26] |
Kochański, L., Kossmann, S., Rogala, E., et al. (1980) Sputum Arginase Activity in Bronchial Asthma. Pneumonologia i Alergologia Polska, 48, 329-332. |
[27] |
Bonser, L.R. and Erle, D.J. (2017) Airway Mucus and Asthma: The Role of MUC5AC and MUC5B. Journal of Clinical Medicine, 6, 112. https://doi.org/10.3390/jcm6120112 |
[28] |
Montuschi, P. and Peters-Golden, M.L. (2010) Leukotriene Modifiers for Asthma Treatment. Clinical & Experimental Allergy, 40, 1732-1741. https://doi.org/10.1111/j.1365-2222.2010.03630.x |
[29] |
Bao, Z.S., Hong, L., Guan, Y., et al. (2011) Inhibition of Airway Inflammation, Hyperresponsiveness and Remodeling by Soy Isoflavone in a Murine Model of Allergic Asthma. International Immunopharmacology, 11, 899-906. https://doi.org/10.1016/j.intimp.2011.02.001 |
[30] |
Lago, J.H., Toledo-Arruda, A.C., Mernak, M., et al. (2014) Structure-Activity Association of Flavonoids in Lung Diseases. Molecules, 19, 3570-3595. https://doi.org/10.3390/molecules19033570 |
[31] |
Possa, S.S., Leick, E.A., Prado, C.M., et al. (2013) Eosinophilic Inflammation in Allergic Asthma. Frontiers in Pharmacology, 4, Article No. 46. https://doi.org/10.3389/fphar.2013.00046 |
[32] |
Lee, H.E., Jeon, S.J., Ryu, B., et al. (2016) Swertisin, a C-glucosylflavone, Ameliorates Scopolamine-Induced Memory Impairment in Mice with Its Adenosine A1 Receptor Antagonistic Property. Behavioural Brain Research, 306, 137-145. https://doi.org/10.1016/j.bbr.2016.03.030 |
[33] |
Fred, E.M. and Eugene, S. (1942) Treatment of Asthmatic Parox-ysm with Nicotinic Acid. Allergy, 13, 397-403. https://doi.org/10.1016/S0021-8707(42)90298-3 |