[1] |
Winkler, M.K. and Straka, L. (2019) New Directions in Biological Nitrogen Removal and Recovery from Wastewater. Current Opinion in Biotechnology, 57, 50-55. https://doi.org/10.1016/j.copbio.2018.12.007 |
[2] |
Dong, Y., Yuan, H., Zhang, R. and Zhu, N. (2019) Removal of Ammonia Nitrogen from Wastewater: A Review. Transactions of the ASABE, 62, 1767-1778. https://doi.org/10.13031/trans.13671 |
[3] |
Gao, J., Xiong, Z., Zhang, J., Zhang, W. and Mba, F.O. (2009) Phosphorus Removal from Water of Eutrophic Lake Donghu by Five Submerged Macrophytes. De-salination, 242, 193-204. https://doi.org/10.1016/j.desal.2008.04.006 |
[4] |
Lin, K.N., Zhu, Y., Zhang, Y.B. and Lin, H. (2019) Determination of Ammonia Nitrogen in Natural Waters: Recent Advances and Applications. Trends in Environmental Analytical Chemistry, 24, e00073. https://doi.org/10.1016/j.teac.2019.e00073 |
[5] |
Reshma, A., Donna, D., Niclas, K. and Burak, D. (2017) Methods of Ammonia Removal in Anaerobic Digestion: A Review. Water Science & Technology, 76, 1925-1938. https://doi.org/10.2166/wst.2017.406 |
[6] |
Zhang, L., Xu, E.G., Li, Y.B., Liu, H.L., Vidal, D.E. and Giesy, J.P. (2018) Ecological Risks Posed by Ammonia Nitrogen (AN) and Un-Ionized Ammonia (NH3) in Seven Major River Systems of China. Chemosphere, 202, 136-144. https://doi.org/10.1016/j.chemosphere.2018.03.098 |
[7] |
Liu, H., Chen, Z., Guan, Y. and Xu, S. (2018a) Role and Application of Iron in Water Treatment for Nitrogen Removal: A Review. Chemosphere, 204, 51-62. https://doi.org/10.1016/j.chemosphere.2018.04.019 |
[8] |
Li, H.S., Zhou, S.Q., Huang, G.T. and Xu, B. (2014) Achieving Stable Partial Nitritation Using Endpoint pH Control in an SBR Treating Landfill Leachate. Process Safety & Environmental Protection, 92, 199-205. https://doi.org/10.1016/j.psep.2013.01.005 |
[9] |
Kim, D., Ryu, H.D., Kim, M.S., Kim, J. and Lee, S.I. (2007) En-hancing Struvite Precipitation Potential for Ammonia Nitrogen Removal in Municipal Landfill Leachate. Journal of Haz-ardous Materials, 146, 81-85. https://doi.org/10.1016/j.jhazmat.2006.11.054 |
[10] |
Wang, Y.Q., Liu, S.J., Xu, Z., Han, T.W. Chuan, S. and Zhu, T. (2006) Ammonia Removal from Leachate Solution Using Natural Chinese Clinoptilolite. Journal of Hazardous Mate-rials, 136, 735-740. https://doi.org/10.1016/j.jhazmat.2006.01.002 |
[11] |
Hasar, H., Unsal, S.A. Ipek, U., Karatas, S., Cinar, O., Yaman, C. and Kına, C. (2009) Stripping/Flocculation/Mem- brane Bioreactor/Reverse Osmosis Treatment of Municipal Landfill Leachate. Journal of Hazardous Materials, 171, 309-317. https://doi.org/10.1016/j.jhazmat.2009.06.003 |
[12] |
Wang, C.C., Lee, P.H., Kumar, M., Huang, Y.T., Sung, S. and Lin, J.G. (2010) Simultaneous Partial Nitrification, Anaerobic Ammonium Oxidation and Denitrification (SNAD) in a Full-Scale Landfill-Leachate Treatment Plant. Journal of Hazardous Materials, 175, 622-628. https://doi.org/10.1016/j.jhazmat.2009.10.052 |
[13] |
Capodaglio, A.G., Hlavinek, P. and Raboni, M. (2015) Physi-co-Chemical Technologies for Nitrogen Removal from Wastewaters: A Review. Revista Ambiente Agua, 10, 481-498. https://doi.org/10.4136/ambi-agua.1618 |
[14] |
Ji, Y.Z., Bai, J., Li, J.H., Luo, T., Qiao, L., Zeng, Q.Y. and Zhou, B.X. (2017) Highly Selective Transformation of Ammonia Nitrogen to N2 Based on a Novel Solar-Driven Photoelectro-catalytic-Chlorine Radical Reactions System. Water Research, 125, 512-519. https://doi.org/10.1016/j.watres.2017.08.053 |
[15] |
Yang, H., Li, D., Zeng, H.P. and Zhang, J. (2019) Impact of Mn and Ammonia on Nitrogen Conversion in Biofilter Coupling Nitrification and ANAMMOX that Simultaneously Re-moves Fe, Mn and Ammonia. Science of the Total Environment, 648, 955-961. https://doi.org/10.1016/j.scitotenv.2018.08.223 |
[16] |
Jorgensen, T.C. and Weatherley, L.R. (2003) Ammonia Re-moval from Wastewater by Ion Exchange in the Presence of Organic Contaminants. Water Research, 37, 1723-1728. https://doi.org/10.1016/S0043-1354(02)00571-7 |
[17] |
Chai, L.Y., Peng, C., Min, X.B., Tang, C.J., Song, Y.X. Zhang, Y. and Zhang, J. (2017) Two-Sectional Struvite Formation Process for Enhanced Treatment of Copper-Ammonia Complex Wastewater. Transactions of Nonferrous Metals Society of China, 27, 457-466. https://doi.org/10.1016/S1003-6326(17)60052-9 |
[18] |
Hasan, H.A., Abdullah S.R.S., Kamarudin, S.K. and Kofli, N.T. (2012) On-Off Control of Aeration Time in the Simultaneous Removal of Ammonia and Manganese Using a Bio-logical Aerated Filter System. Process Safety & Environmental Protection, 91, 415-422. https://doi.org/10.1016/j.psep.2012.10.001 |
[19] |
Sotoft, L.F., Pryds, M.B., Nielsen, A.K. and Norddahl, B. (2015) Process Simulation of Ammonia Recovery from Biogas Digestate by Air Stripping with Reduced Chemical Consump-tion. Computer Aided Chemical Engineering, 37, 2465-2470. https://doi.org/10.1016/B978-0-444-63576-1.50105-9 |
[20] |
Tu, Y.N., Feng, P., Ren, Y.G., Cao, Z.H., Wang, R. and Xu, Z.Q. (2019) Adsorption of Ammonia Nitrogen on Lignite and Its Influence on Coal Water Slurry Preparation. Fuel, 238, 34-43. https://doi.org/10.1016/j.fuel.2018.10.085 |
[21] |
Liu, Y.W., Ngo, H.H., Guo, W.S., Peng, L., Wang, D.B. and Ni, B.J. (2019) The Roles of Free Ammonia (FA) in Biological Wastewater Treatment Processes: A Re-view. Environment International, 123, 10-19. https://doi.org/10.1016/j.envint.2018.11.039 |
[22] |
Song, Z., Zhang, X.B., Ngo, H.H., Guo, W.S., Song, P.F., Zhang, Y.C. and Wen, H.T. (2019) Zeolite Powder Based Polyurethane Sponges as Biocarriers in Moving Bed Biofilm Reactor for Improving Nitrogen Removal of Municipal Wastewater. Science of the Total Environment, 651, 1078-1086. https://doi.org/10.1016/j.scitotenv.2018.09.173 |
[23] |
Hai, R.T., He, Y.Q., Wang, X.H. and Li, Y. (2015) Simulta-neous Removal of Nitrogen and Phosphorus from Swine Wastewater in a Sequencing Batch Biofilm Reactor. Chinese Journal of Chemical Engineering, 23, 303-308. https://doi.org/10.1016/j.cjche.2014.09.036 |
[24] |
Arnz, P., Arnold, E. and Wilderer, P.A. (2001) Enhanced Biolog-ical Phosphorus Removal in a Semi Full-Scale SBBR. Water Science & Technology, 43, 167-174. https://doi.org/10.2166/wst.2001.0133 |
[25] |
Gieseke, A., Arnz, P., Amann, R. and Schramm, A. (2002) Simulta-neous P and N Removal in a Sequencingbatch Biofilm Reactor: Insights from Reactor- and Microscale Investigations. Water Research, 36, 501-509. https://doi.org/10.1016/S0043-1354(01)00232-9 |
[26] |
Vasiliadou, I.A., Karanasios, K.A., Pavlou, S. and Vayenas, D.V. (2009) Experimental and Modelling Study of Drinking Water Hydrogenotrophic Denitrification in Packed-Bed Re-actors. Journal of Hazardous Materials, 165, 812-824. https://doi.org/10.1016/j.jhazmat.2008.10.067 |
[27] |
Liu, J., Su, J.F., Ali, A., Wang, Z., Chen, C.L. and Xu, L. (2021) Role of Porous Polymer Carriers and Iron-Carbon Bioreactor Combined Micro-Electrolysis and Biological Deni-trification in Efficient Removal of Nitrate from Wastewater under Low Carbon to Nitrogen Ratio. Bioresource Technolo-gy, 321, Article ID: 124447. https://doi.org/10.1016/j.biortech.2020.124447 |
[28] |
Guo, W.S., Ngo, H.H., Dharmawan, F. and Palmer, C. (2010) Roles of Polyurethane Foam in Aerobic Moving and Fixed Bed Bioreactors. Bioresource Technology, 101, 1435-1439. https://doi.org/10.1016/j.biortech.2009.05.062 |
[29] |
Zhang, H.Y., Li, A.M., Zhang, W. and Shuang, C.D. (2016) Combination of Na-Modified Zeolite and Anion Exchange Resin for Advanced Treatment of a High Ammonia-Nitrogen Content Municipal Effluent. Journal of Colloid and Interface Science, 468, 128-135. https://doi.org/10.1016/j.jcis.2015.10.006 |
[30] |
Montalvo, S., Huiliñir, C., Borja, R., Sánchez, E. and Herrmann, C. (2020) Application of Zeolites for Biological Treatment Processes of Solid Wastes and Wastewaters—A Review. Biore-source Technology, 301, Article ID: 122808. https://doi.org/10.1016/j.biortech.2020.122808 |
[31] |
Shao, Y.X., Shi, Y.J., Mohammed, A. and Liu, Y. (2017) Wastewater Ammonia Removal Using an Integrated Fixed- Film Activated Sludge-Sequencing Batch Biofilm Reactor (IFAS-SBR): Comparison of Suspended Flocs and Attached Biofilm. International Biodeterioration & Biodegradation, 116, 38-47. https://doi.org/10.1016/j.ibiod.2016.09.026. |
[32] |
Fan, J.W., Wu, H.X., Liu, R.Y., Meng, L.Y., Fang, Z., Liu, F. and Xu, Y.H. (2020) Non-Thermal Plasma Combined with Zeolites to Remove Ammonia Nitrogen from Wastewater. Journal of Hazardous Materials, 401, Article ID: 123627. https://doi.org/10.1016/j.jhazmat.2020.123627 |
[33] |
Dickson, J., Conroy, N.A., Xie, Y., Powell, B.A., Seaman, J.C., Boyanov, M.I., Kemner, K.M. and Kaplan, D.I. (2020) Surfactant-Modified Siliceous Zeolite Y for Pertechnetate Remediation. Chemical Engineering Journal, 402, Article ID: 126268. https://doi.org/10.1016/j.cej.2020.126268 |
[34] |
Zhang, Q., Chen, X., Zhang, Z.Y., Luo, Y.D., Wua, H., Zhang, L.J., Zhang, X.P. and Zhao, T.T. (2020) Performance and Microbial Ecology of a Novel Moving Bed Biofilm Reactor Process Inoculated with Heterotrophic Nitrification-Aerobic Denitrification Bacteria for High Ammonia Nitrogen Wastewater Treatment. Bioresource Technology, 315, Article ID: 123813. https://doi.org/10.1016/j.biortech.2020.123813 |
[35] |
Jiang, S.Y., Yan, L.L., Wang, R.K., Li, G.H., Rao, P.H., Ju, M.C., Jian, L., Guo, X. and Che, L. (2022) Recyclable Nitrogen-Doped Biochar via Low-Temperature Pyrolysis for En-hanced Lead(II) Removal. Chemosphere, 286, Article ID: 131666. https://doi.org/10.1016/j.chemosphere.2021.131666 |
[36] |
Wang, X.W. and Wu, P.Y. (2018) Melamine Foam-Supported 3D Interconnected Boron Nitride Nanosheets Network Encapsulated in Epoxy to Achieve Significant Thermal Conductivity Enhancement at an Ultralow Filler Loading. Chemical Engineering Journal, 348, 723-731. https://doi.org/10.1016/j.cej.2018.04.196 |
[37] |
Li, J.B., Wei, J.L., Hao H.N., Guo, W.S., Liu, H.B., Du, B., Wei, Q. and Wei, D. (2018) Characterization of Soluble Microbial Products in a Partial Nitrification Sequencing Batch Biofilm Reactor Treating High Ammonia Nitrogen Wastewater. Bioresource Technology, 249, 241-246. https://doi.org/10.1016/j.biortech.2017.10.013 |
[38] |
Wei, D., Shi, L., Yan, T., Zhang, G., Wang, Y.F. and Du, B. (2014) Aerobic Granules Formation and Simultaneous Nitrogen and Phosphorus Removal Treating High Strength Am-monia Wastewater in Sequencing Batch Reactor. Bioresource Technology, 171, 211-216. https://doi.org/10.1016/j.biortech.2014.08.001 |
[39] |
Wu, N., Wei, D., Zhang, Y.F., Xu, W.Y., Yan, T., Du, B. and Wei, Q. (2016) Comparison of Soluble Microbial Products Released from Activated Sludge and Aerobic Granular Sludge Systems in the Presence of Toxic 2,4-Dichloro- phenol. Bioprocess and Biosystems Engineering, 40, 309-318. https://doi.org/10.1007/s00449-016-1698-2 |
[40] |
Feng, L.J., Jia, R., Zeng, Z., Yang, G.F. and Xu, X.Y. (2018) Simultaneous Nitrification-Denitrification and Microbial Community Profile in an Oxygen-Limiting Intermittentaeration SBBR with Biodegradable Carriers. Biodegradation, 29, 473-486. https://doi.org/10.1007/s10532-018-9845-x |
[41] |
Zhang, X.Y., Zhou, X.T., Xie, Y.J., Rong, X.S., Liu, Z.G., Xiao, X., Liang, Z.S., Jiang, S.Y., Wei, J. and Wu, Z.R. (2019) A Sustainable Bio-Carrier Medium for Wastewater Treatment: Modified Basalt Fiber. Journal of Cleaner Production, 225, 472-480. https://doi.org/10.1016/j.jclepro.2019.03.333 |
[42] |
Dong, H.C., Liu, H.M., Yang, X., Gong, H.J., Zhang, H., Wang, R.K., Yan L.L. and Mai, W.N. (2021) The Effect of Initial Conditions with Aerobic Biological Treatment on Ani-line Dyeing Wastewater. Processes, 9, Article No. 1329. https://doi.org/10.3390/pr9081329 |
[43] |
Zhao, Y. Park, H., Park, J., Zhang, F., Chen, C., Li, X., Zhao, D. and Zhao, F. (2016) Effect of Different Salinity Adaptation on the Performance and Microbial Community in a Sequencing Batch Reactor. Bioresource Technology, 216, 808-816. https://doi.org/10.1016/j.biortech.2016.06.032 |
[44] |
Chao C.F., Zhao Y.X., Keskar J., Ji M., Wang Z.J. and Li X. (2020) Simultaneous Removal of COD, Nitrogen and Phospho-rus and the Tridimensional Microbial Response in a Sequencing Batch Biofilm Reactor: With Varying C/N/P Ratios. Bi-ochemical Engineering Journal, 154, Article ID: 107215. https://doi.org/10.1016/j.bej.2019.04.017 |
[45] |
Wang, X., Wang, S., Zhao, J., Dai, X., Li, B. and Peng, Y. (2015) Treating Low Carbon/Nitrogen (C/N) Wastewater in Simultane-ous Nitrification-Endogenous Denitrification and Phosphorous Removal (SNDPR) Systems by Strengthening Anaerobic Intracellular Carbon Storage. Water Research, 77, 191-200. https://doi.org/10.1016/j.watres.2020.115714 |
[46] |
Gündoğdu, M., Kabay, N., Yiğit, N.Ö., Kitiş, M., Pek, T.Ö. and Yüksel, M. (2019) Effect of Concentrate Recirculation on the Product Water Quality of Integrated MBR-NF Process for Wastewater Reclamation and Industrial Reuse. Journal of Water Process Engineering, 29, Article ID: 100485. https://doi.org/10.1016/j.jwpe.2017.08.023 |
[47] |
Liu, Q., Yang, Y., Mei, X., Liu, B., Chen, C. and Xing, D. (2018) Response of the Microbial Community Structure of Biofilms to Ferric Iron in Microbial Fuel Cells. Science of the Total Environment, 631, 8503-8509. https://doi.org/10.1016/j.scitotenv.2018.03.008 |
[48] |
Wang, L., Li, Y., Wang, L., Zhu, M., Zhu, X., Qian, C. and Li, W. (2018) Responses of Biofilm Microorganisms from Moving Bed Biofilm Reactor to Antibiotics Exposure: Protec-tive Role of Extracellular Polymeric Substances. Bioresource Technology, 254, 268-277. https://doi.org/10.1016/j.biortech.2018.01.063 |
[49] |
Wang, X., Bi, X., Hem, L.J. and Ratnaweera, H. (2018) Mi-crobial Community Composition of a Multi-Stage Moving Bed Biofilm Reactor and Its Interaction with Kinetic Model Parameters Estimation. Journal of Environmental Management, 218, 340-347. https://doi.org/10.1016/j.jenvman.2018.04.015 |
[50] |
Atabek, A. and Camesano, T.A. (2007) Atomic Force Mi-croscopy Study of the Effect of Lipopolysaccharides and Extracellular Polymers on Adhesion of Pseudomonas aeru-ginosa. Journal of Bacteriology, 189, 8503-8509. https://doi.org/10.1128/JB.00769-07 |
[51] |
Wei, Z.Y., Hao, J., Sun, J.S. and Shi, J.P. (2016) Isolation of Raoultella sp. sari01 and Its Heterotrophic Nitrification- Aerobic Denitrification Characteristics. Environmental Science, 7, 2673-2680. |
[52] |
Tang, B., Chen, Q., Bin, L., Huang, S., Zhang, W., Fu, F. and Li, P. (2017) Insight into the Microbial Community and its Succession of a Coupling Anaerobic-Aerobic Biofilm on Semi-Suspended Bio-Carriers. Bioresource Technology, 247, 591-598. https://doi.org/10.1016/j.biortech.2017.09.147 |
[53] |
Biswas, K., Taylor, M.W. and Turner, S.J. (2014) Successional Development of Biofilms in Moving Bed Biofilm Reactor (MBBR) Systems Treating Municipal Wastewater. Applied Microbiology & Biotechnology, 98, 1429-1440. https://doi.org/10.1007/s00253-013-5082-8 |
[54] |
Shapleigh, J.P. (2011) Oxygen Control of Nitrogen Oxide Res-piration, Focusing on α-Proteobacteria. Enzymology and Ecology of the Nitrogen Cycle, 39, 179-183. https://doi.org/10.1042/BST0390179 |