[1] |
Li, G., Zheng, T., Wu, L., Han, Q., Lei, Y., Xue, L., Zhang, L., Gu, X. and Yang, Y. (2021) Bionic Microenviron-ment-Inspired Synergistic Effect of Anisotropic Micro-Nanocomposite Topology and Biology Cues on Peripheral Nerve Regeneration. Science Advances, 7, Article No. abi5812. https://doi.org/10.1126/sciadv.abi5812 |
[2] |
Yuan, Y., Zhang, P., Yang, Y., Wang, X. and Gu, X. (2004) The Interaction of Schwann Cells with Chitosan Membranes and Fi-bers in Vitro. Biomaterials, 25, 4273-4278. https://doi.org/10.1016/j.biomaterials.2003.11.029 |
[3] |
Li, G., Xue, C., Wang, H., Yang, X., Zhao, Y., Zhang, L. and Yang, Y. (2018) Spatially Featured Porous Chitosan Conduits with Mi-cropatterned Inner Wall and Seamless Sidewall for Bridging Peripheral Nerve Regeneration. Carbohydrate Polymers, 194, 225-235. https://doi.org/10.1016/j.carbpol.2018.04.049 |
[4] |
Li, G., Xiao, Q., McNaughton, R., Han, L., Zhang, L., Wang, Y. and Yang, Y. (2017) Nanoengineered Porous Chitosan/CaTiO3 Hybrid Scaffolds for Accelerating Schwann Cells Growth in Peripheral Nerve Regeneration. Colloids and Surfaces B: Biointerfaces, 158, 57-67. https://doi.org/10.1016/j.colsurfb.2017.06.026 |
[5] |
Jiang, M., Cheng, Q., Su, W., Wang, C., Yang, Y., Cao, Z. and Ding, F. (2014) The Beneficial Effect of Chitooligosaccharides on Cell Behavior and Function of Primary Schwann Cells Is Accompanied by Up-Regulation of Adhesion Proteins and Neurotrophins. Neurochemical Research, 39, 2047-2057. https://doi.org/10.1007/s11064-014-1387-y |
[6] |
Bak, M., Gutkowska, O.N., Wagner, E. and Gosk, J. (2017) The Role of Chitin and Chitosan in Peripheral Nerve Reconstruction. Polymers in Medicine, 47, 43-47. https://doi.org/10.17219/pim/75653 |
[7] |
Huang, J., Lu, L., Zhang, J., Hu, X., Zhang, Y., Liang, W., Wu, S. and Luo, Z. (2012) Electrical Stimulation To Conductive Scaffold Promotes Axonal Regeneration and Remyelination in a Rat Model of Large Nerve Defect. PLOS ONE, 7, Article ID: e39526. https://doi.org/10.1371/journal.pone.0039526 |
[8] |
Li, R., Li, D.H., Zhang, H.Y., Wang, J., Li, X.K. and Xiao, J. (2020) Growth Factors-Based Therapeutic Strategies and Their Underlying Signaling Mechanisms for Peripheral Nerve Regeneration. Acta Pharmacologica Sinica, 41, 1289-1300. https://doi.org/10.1038/s41401-019-0338-1 |
[9] |
Patel, N.P., Lyon, K.A. and Huang, J.H. (2018) An Update-Tissue Engineered Nerve Grafts for the Repair of Peripheral Nerve Injuries. Neural Regeneration Research, 13, 764-774. https://doi.org/10.4103/1673-5374.232458 |
[10] |
Li, G., Han, Q., Lu, P., Zhang, L., Zhang, Y., Chen, S., Zhang, P., Zhang, L., Cui, W., Wang, H. and Zhang, H. (2020) Construction of Dual-Biofunctionalized Chitosan/Collagen Scaffolds for Simultaneous Neovascularization and Nerve Regeneration. Research, 2020, Article ID: 2603048. https://doi.org/10.34133/2020/2603048 |
[11] |
Ichihara, S., Inada, Y., Nakada, A., Endo, K., Azuma, T., Nakai, R., Tsutsumi, S., Kurosawa, H. and Nakamura, T. (2009) Development of New Nerve Guide Tube for Repair of Long Nerve Defects. Tissue Engineering Part C: Methods, 15, 387-402. https://doi.org/10.1089/ten.tec.2008.0508 |
[12] |
Fujimaki, H., Uchida, K., Inoue, G., Matsushita, O., Nemoto, N., Miyagi, M., Inage, K., Takano, S., Orita, S., Ohtori, S., Tanaka, K., Sekiguchi, H. and Takaso, M. (2020) Polyglycolic Acid-Collagen Tube Combined with Collagen-Binding Basic Fibroblast Growth Factor Accelerates Gait Recovery in a Rat Sciatic Nerve Critical-Size Defect Model. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 108, 326-332. https://doi.org/10.1002/jbm.b.34391 |
[13] |
Wang, X., Hu, W., Cao, Y., Yao, J., Wu, J. and Gu, X. (2005) Dog Sci-atic Nerve Regeneration Across A, 30-Mm Defect Bridged by a Chitosan/PGA Artificial Nerve Graft. Brain, 128, 1897-1910. https://doi.org/10.1093/brain/awh517 |
[14] |
Shen, H., Shen, Z.L., Zhang, P.H., Chen, N.L., Wang, Y.C., Zhang, Z.F. and Jin, Y.Q. (2010) Ciliary Neurotrophic Factor-Coated Polylactic-Polyglycolic Acid Chitosan Nerve Conduit Promotes Peripheral Nerve Regeneration in Canine Tibial Nerve Defect Repair. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 95B, 161-170. https://doi.org/10.1002/jbm.b.31696 |
[15] |
Mokarizadeh, A., Mehrshad, A. and Mohammadi, R. (2016) Local Polyethylene Glycol in Combination with Chitosan Based Hybrid Nan-ofiber Conduit Accelerates Transected Peripheral Nerve Regeneration. Journal of Investigative Surgery, 29, 167-174. https://doi.org/10.3109/08941939.2015.1098758 |
[16] |
Huang, Z., Kankowski, S., Ertekin, E., Almog, M., Nevo, Z., Rochkind, S. and Haastert-Talini, K. (2021) Modified Hyaluronic Acid-Laminin-Hydrogel as Luminal Filler for Clinical-ly Approved Hollow Nerve Guides in a Rat Critical Defect Size Model. International Journal of Molecular Sciences, 22, Article No. 6554. https://doi.org/10.3390/ijms22126554 |
[17] |
Mingyu, C., Kai, G., Jiamou, L., Yandao, G., Nanming, Z. and Xiufang, Z. (2004) Surface Modification and Characterization of Chitosan Film Blended with Poly-L-Lysine. Journal of Bio-materials Applications, 19, 59-75. https://doi.org/10.1177/0885328204043450 |
[18] |
Chen, T.K., Jiang, H.M., Zhu, Y.B., Chen, X.L., Zhang, D., Li, X., Shen, F.C., Xia, H.Y., Min, Y.G. and Xie, K. (2021) Highly Ordered, 3D Tissue Engineering Scaffolds As a Versa-tile Culture Platform for Nerve Cells Growth. Macromolecular Bioscience, 21, Article ID: 2100047. https://doi.org/10.1002/mabi.202100047 |
[19] |
Huang, C.W., Lu, S.Y., Huang, T.C., Huang, B.M., Sun, H.S., Yang, S.H., Chuang, J.I., Hsueh, Y.Y., Wu, Y.T. and Wu, C.C. (2020) FGF9 Induces Functional Differentiation To Schwann Cells From Human Adipose Derived Stem Cells. Theranostics, 10, 2817-2831. https://doi.org/10.7150/thno.38553 |
[20] |
Boecker, A.H., Van Neerven, S.G., Scheffel, J., Tank, J., Altinova, H., Seidensticker, K., Deumens, R., Tolba, R., Weis, J., Brook, G.A., Pallua, N. and Bozkurt, A. (2016) Pre-Differentiation of Mesenchymal Stromal Cells in Combination with a Microstructured Nerve Guide Supports Peripheral Nerve Regener-ation in the Rat Sciatic Nerve Model. European Journal of Neuroscience, 43, 404-416. https://doi.org/10.1111/ejn.13052 |
[21] |
Zhao, Y., Tian, C., Wu, P., Chen, F., Xiao, A., Ye, Q., Shi, X., Wang, Z., Han, X. and Chen, Y. (2021) Hydroxypropyl Chitosan/Soy Protein Isolate Conduits Promote Peripheral Nerve Regener-ation. Tissue Engineering Part A, 28, 225-238. https://doi.org/10.1089/ten.tea.2021.0068 |
[22] |
Moattari, M., Kouchesfehani, H.M., Kaka, G., Sadraie, S.H., Naghdi, M. and Mansouri, K. (2018) Chitosan-Film Associated with Mesenchymal Stem Cells Enhanced Regeneration of Pe-ripheral Nerves: A Rat Sciatic Nerve Model. Journal of Chemical Neuroanatomy, 88, 46-54. https://doi.org/10.1016/j.jchemneu.2017.10.003 |
[23] |
Ding, F., Wu, J.A., Yang, Y.M., Hu, W., Zhu, Q., Tang, X., Liu, J. and Gu, X.S. (2010) Use of Tissue-Engineered Nerve Grafts Consisting of a Chitosan/Poly(Lactic-Co-Glycolic Acid)-Based Scaffold Included with Bone Marrow Mesenchymal Cells for Bridging, 50-Mm Dog Sciatic Nerve Gaps. Tissue Engineering Part A, 16, 3779-3790. https://doi.org/10.1089/ten.tea.2010.0299 |
[24] |
Xue, C.B., Hu, N., Gu, Y., Yang, Y.M., Liu, Y., Liu, J.E., Ding, F. and Gu, X.S. (2012) Joint Use of a Chitosan/PLGA Scaffold and MSCs To Bridge an Extra Large Gap in Dog Sciatic Nerve. Neurorehabilitation and Neural Repair, 26, 96-106. https://doi.org/10.1177/1545968311420444 |
[25] |
Fadia, N.B., Bliley, J.M., DiBernardo, G.A., Crammond, D.J., Schilling, B.K., Sivak, W.N., Spiess, A.M., Washington, K.M., Waldner, M., Liao, H.T., James, I.B., Minteer, D.M., Tompkins-Rhoades, C., Cottrill, A.R., Kim, D.Y., Schweizer, R., Bourne, D.A., Panagis, G.E., Schusterman, M.A., Egro, F.M., Campwala, I.K., Simpson, T., Weber, D.J., Gause, T., Brooker, J.E., Josyula, T., Guevara, A.A., Repko, A.J., Mahoney, C.M. and Marra, K.G. (2020) Long-Gap Peripheral Nerve Repair Through Sustained Release of a Neurotrophic Factor in Nonhuman Primates. Science Translational Medi-cine, 12, Article No. aav7753. https://doi.org/10.1126/scitranslmed.aav7753 |
[26] |
Kong, Y.F., Shi, W., Zhang, D.Z., Jiang, X.P., Kuss, M., Liu, B., Li, Y.L. and Duan, B. (2021) Injectable, Antioxidative, and Neurotrophic Fac-tor-Deliverable Hydrogel for Peripheral Nerve Regeneration and Neuropathic Pain Relief. Applied Materials Today, 24, Article ID: 101090. https://doi.org/10.1016/j.apmt.2021.101090 |
[27] |
Patel, M., Mao, L., Wu, B. and VandeVord, P.J. (2007) GDNF-Chitosan Blended Nerve Guides: A Functional Study. Journal of Tissue Engineering and Regenera-tive Medicine, 1, 360-367. https://doi.org/10.1002/term.44 |
[28] |
Shang, J., Qiao, H., Hao, P., Gao, Y., Zhao, W., Duan, H., Yang, Z. and Li, X. (2019) BFGF-Sodium Hyaluronate Collagen Scaffolds Enable the Formation of Nascent Neural Networks After Adult Spinal Cord Injury. Journal of Biomedical Nanotechnology, 15, 703-716. https://doi.org/10.1166/jbn.2019.2732 |
[29] |
Li, M., Zhao, W., Gao, Y., Hao, P., Shang, J., Duan, H., Yang, Z. and Li, X. (2019) Differentiation of Bone Marrow Mesenchymal Stem Cells into Neural Lineage Cells Induced by BFGF-Chitosan Controlled Release System. BioMed Research International, 2019, Article ID: 5086297. https://doi.org/10.1155/2019/5086297 |
[30] |
Duan, H., Li, X., Wang, C., Hao, P., Song, W., Li, M., Zhao, W., Gao, Y. and Yang, Z. (2016) Functional Hyaluronate Collagen Scaffolds Induce NSCs Differentiation into Functional Neu-rons in Repairing the Traumatic Brain Injury. Acta Biomaterialia, 45, 182-195. https://doi.org/10.1016/j.actbio.2016.08.043 |
[31] |
Woodbury, M.E. and Ikezu, T. (2014) Fibroblast Growth Fac-tor-2 Signaling in Neurogenesis and Neurodegeneration. Journal of Neuroimmune Pharmacology, 9, 92-101. https://doi.org/10.1007/s11481-013-9501-5 |