[1] |
邬高翔, 田瑞. 二氧化碳捕集技术研究进展[J]. 云南化工, 2020, 47(4): 22-23. |
[2] |
谢辉. 二氧化碳捕集技术应用现状及研究进展[J]. 化肥设计, 2021, 59(6): 1-9. |
[3] |
颜星, 刘永生, 杨杰. 金属有机骨架化合物在CO2捕集中的研究进展[J]. 天然气化工(C1化学与化工), 2016, 41(1): 68-74. |
[4] |
邵雪泉, 赵俊虎. 氮可控多级孔聚合物合成及CO2捕获性能研究[J]. 化工管理, 2018(26): 24-26. |
[5] |
Geng, J.C., Xue, D.M., Liu, X.Q., et al. (2017) N-Doped Porous Carbons for CO2Capture: Rational Choice of N-Containing Polymer with High Phenyl Density as Precursor. AIChE Journal, 63, 1648-1658. https://doi.org/10.1002/aic.15531 |
[6] |
肖筱瑜, 谷娟平, 梁文寿, 等. 二氧化碳捕集、封存与利用技术应用状况[J]. 广州化工, 2022, 50(3): 26-29. |
[7] |
孙易, 建伟伟, 解伟欣, 等. 金属-有机骨架材料用于CO2吸附的研究进展[J]. 应用化工, 2021, 50(12): 3482-3488. |
[8] |
Tan, Y.T., Nookuea, W., Li, H.L., et al. Property Impacts on Carbon Capture and Storage (CCS) Processes: A Review. Energy Conversion and Management, 118, 204-222. |
[9] |
Criado, Y.A., Arias, B. and Abanades, J.C. (2017) Calcium Looping CO2Capture System for Back-Up Power Plants. Energy & Environmental Science, 10, 1994-2004. https://doi.org/10.1039/C7EE01505D |
[10] |
Pera-Titus, M. (2014) Porous Inorganic Membranes for CO2Capture: Present and Prospects. Chemical Reviews, 114, 1413-1492. https://doi.org/10.1021/cr400237k |
[11] |
王兰云, 张亚娟, 徐永亮, 等. 离子液体吸收CO2及其机理研究进展[J]. 安全与环境学报, 2021: 1-20. |
[12] |
俞犇, 陈浩冬, 张佳帅, 等. 金属有机框架材料对CO2分离的研究进展[J]. 山东化工, 2017, 46(24): 61-62. |
[13] |
王艺, 张艺凡, 龙世伟, 等. ZnCo双金属MOF材料的制备及其催化性能探究[J]. 山东化工, 2022, 51(3): 43-45. |
[14] |
周杰, 杨明莉. 电化学方法制备MOF膜的研究进展[J]. 材料导报, 2020, 34(19): 19043-19049. |
[15] |
刘增欣, 王依军, 郝春莲, 等. Zn/Cu单晶转换MOF材料的CO2/CH4分离性能研究[J]. 化工学报, 2021, 72(S1): 546-553. |
[16] |
李新宇, 张硕卿, 丁斌, 等. 不同中心原子的MOF材料在锂(钠)离子电池中的应用[J]. 现代化工, 2019, 39(9): 44-48. |
[17] |
Sahin, F., Topuz, B. and Kalipcilar, H. (2018) Synthesis of ZIF-7, ZIF-8, ZIF-67, and ZIF-L from Recycled Mother Liquors. Microporous and Mesoporous Materials, 261, 259-267. https://doi.org/10.1016/j.micromeso.2017.11.020 |
[18] |
Wu, X., Liu, W., Wu, H., et al. (2018) Nanopo-rous ZIF-67 Embedded Polymers of Intrinsic Microporosity Membranes with Enhanced Gas Separation Performance. Journal of Membrane Science, 548, 309-318. https://doi.org/10.1016/j.memsci.2017.11.038 |
[19] |
Olavi, H., Eskandari, A., Shojaei, A., et al. (2018) Enhancing CO2/N2Adsorption Selectivity via Post-Synthetic Modification of NH2-UiO-66(Zr). Microporous and Mesoporous Materials, 257, 193-201. https://doi.org/10.1016/j.micromeso.2017.08.043 |
[20] |
Lv, G., Liu, J., Xiong, Z., et al. (2016) Selectivity Adsorptive Mechanism of Different Nitrophenols on UiO-66 and UiO-66-NH2in Aqueous Solution. Journal of Chemical & Engineering Data, 61, 3868-3876. https://doi.org/10.1021/acs.jced.6b00581 |
[21] |
Chatti, R., Bansiwal, A.K., Thote, J.A., et al. (2009) Amine Loaded Zeolites for Carbon Dioxide Capture: Amine Loading and Adsorption Studies. Microporous and Mesoporous Materials, 121, 84-89. https://doi.org/10.1016/j.micromeso.2009.01.007 |
[22] |
Shin, S., Yoo, D.K., Bae, Y.S., et al. (2020) Polyvinylamine-Loaded Metal-Organic Framework MIL-101 for Effective and Selective CO2Adsorption under Atmospheric or Lower Pressure. Chemical Engineering Journal, 389, Article ID: 123429. https://doi.org/10.1016/j.cej.2019.123429 |
[23] |
Molavi, H., Joukani, F.A. and Shojaei, A. (2018) Ethylenediamine Grafting to Functionalized NH2-UiO-66 Using Green Aza-Michael Addition Reaction to Improve CO2/CH4Adsorption Selectivity. Industrial & Engineering Chemistry Research, 57, 7030-7039. https://doi.org/10.1021/acs.iecr.8b00372 |
[24] |
Lourenco, M.A.O., Fontana, M., Jagdale, P., et al. (2021) Improved CO2Adsorption Properties through Amine Functionalization of Multi-Walled Carbon Nanotubes. Chemical Engineering Journal, 414, Article ID: 128763. https://doi.org/10.1016/j.cej.2021.128763 |