人工抗体治疗 COVID-19 的病毒动力学模型
A Virus Dynamica Model for COVID-19Therapy with Artificial Antibody
摘要:在本文中,我们建立了常量注射 ACE2 受体药物治疗 COVID-19 的动力学模型。首先,我们在生物学意义下定义了基本再生数 R 0,并且得出了系统的两个平衡点:无病平衡点 E 0和地方病平衡点 E 1。其次,利用 Lyapunov 函数和 Routh-Hurwitz 判据证明了无病平衡点和地方病平衡点的存在性和稳定性条件,即当 R 0< 1 时,E 0局部渐近稳定;更进一步可证存在一个常数 R 1。 当 R 1< 1 时,E 0全局渐近稳定;当 R 0> 1 时,E 1局部渐近稳定。最后,通过数值模拟验证了所得结论。
Abstract:In this paper, we formulate a dynamic model for COVID-19 therapy with the constsnt injection of ACE2. First, the basic reproduction number R 0is given. We get two possible biologically meaningful equilibria: disease-free equilibrium E 0and infection equilibrium E 1. When R 0< 1, disease-free equilibrium E0 is locally asymptotically stable; further, we can prove that there exists an R 1, when R 1< 1, disease-free equilibriumE 0is globally asymptotically stable; when R 0> 1, E 1is locally asymptotically stable. Finally, numerical simulation is also presented to demonstrate the applicability of the theoretical predictions.
文章引用:支从安, 马春鸽. 人工抗体治疗 COVID-19 的病毒动力学模型[J]. 应用数学进展, 2022, 11(1): 516-525. https://doi.org/10.12677/AAM.2022.111059

参考文献

[1] Wu, Y.-C., Chen, C.-S. and Chan, Y.-J. (2020) The Outbreak of Covid-19: An Overview. Journal of the Chinese Medical Association, 83, 217-220.
https://doi.org/10.1097/JCMA.0000000000000270
[2] Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., Xiang, H., Cheng, Z., Xiong, Y., et al. (2020) Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA, 323, 1061-1069.
https://doi.org/10.1001/jama.2020.1585
[3] Bonhoeffffer, S., May, R.M., Shaw, G.M. and Nowak, M.A. (1997) Virus Dynamics and Drug Therapy. Proceedings of the National Academy of Sciences of the United States of America, 94, 6971-6976.
https://doi.org/10.1073/pnas.94.13.6971
[4] Perelson, A. and Nelson, P. (1999) Mathematical Models of HIV Dynamics: In Vivo. SIAM Review, 41, 3-44.
https://doi.org/10.1137/S0036144598335107
[5] Zhou, X., Song, X. and Shi, X. (2008) A Difffferential Equation Model of HIV Infection of CD4+ -Cells with Cure Rate. Journal of Mathematical Analysis and Applications, 342, 1342-1355.
[6] Sun, X. and Wei, J. (2015) Stability and Bifurcation Analysis in a Viral Infection Model with Delays. Advances in Difffference Equations, 2015, Article No. 332.
https://doi.org/10.1186/s13662-015-0664-7
[7] Zhang, T., Song, Y., Jiang, Z. and Wang, J. (2020) Dynamical Analysis of a Delayed HIV Virus Dynamic Model with Cell-to-Cell Transmission and Apoptosis of Bystander Cells. Complexity, 2020, Article ID: 2313102.
https://doi.org/10.1155/2020/2313102
[8] La Salle, J.P. (1976) The Stability of Dynamical Systems. SIAM Publications, Philadelphia.
https://doi.org/10.1137/1.9781611970432
[9] MacDuffffee, C.C. (2012) The Theory of Matrices, Volume 5. Springer Science Business Media, Berlin.

为你推荐



Baidu
map