高中生负性生活事件与手机依赖的纵向关系:心理痛苦的中介效应
The Longitudinal Relationship between Negative Life Events and Mobile Phone Dependence in High School Students: The Mediating Effect of Psychological Distress
摘要:目的:探讨T2心理痛苦在高中生T1负性生活事件与T3手机依赖之间的中介作用。方法:293名高中生(女生184名(62.8%),男生109名(37.2%),平均年龄为17.46岁(SD = 0.60))在2017~2019年间完成了关于T1负性生活事件、T2心理痛苦和T3手机依赖的问卷调查。结果:结构方程模型结果表明T2心理痛苦在T1负性生活事件对T3手机依赖的影响中起中介作用。结论:高中生经历的负性生活事件可以影响随后的心理痛苦水平进而增加了个体手机依赖的风险。这些发现丰富了关于高中生青少年心理健康的文献,并有助于阐明高中生负性生活事件与手机依赖之间的关系,这也为预防和干预手机依赖问题提供了理论支持。
Abstract:Objective: To explore the mediating role of T2 psychological pain between T1 negative life events and T3 mobile phone dependence in senior high school students. Methods: 293 high school students (184 girls (62.8%), 109 boys (37.2%), mean age 17.46 years (SD = 0.60)) in 2017~2019, completed a questionnaire on T1 negative life events, T2 psychological distress and T3 mobile phone dependence. Results: Structural equation model results showed that T2 psychological distress played a mediating role in the effect of T1 negative life events on T3 mobile phone dependence. Conclusions: Negative life events experienced by high school students can influence subsequent levels of psychological distress and increase the risk of mobile phone dependence. These findings enrich the literature on the mental health of high school students, and help to clarify the relationship between negative life events and mobile phone dependence in high school students, which also provides theoretical support for the prevention and intervention of mobile phone dependence.
文章引用:刘亚非. 高中生负性生活事件与手机依赖的纵向关系:心理痛苦的中介效应[J]. 社会科学前沿, 2022, 11(1): 302-309. https://doi.org/10.12677/ASS.2022.111044

1. 引言

智能手机由于其便携性、即时性和可访问性等独特功能,在通信设备中起着主导作用 [1] [2] [3]。截至2020年12月,我国手机网民规模达9.86亿,网民使用手机上网的比例高达99.7% [4]。尽管手机提供了极大的便利,但对手机的依赖也会产生许多负面影响,如抑郁 [5]、焦虑 [6]、冲动 [7]、注意力受损 [8]、抑制控制受损 [9]、人际问题 [10] 和学业失败 [11],甚至是自杀意念 [12]。此外,从心理健康问题和过度使用智能手机的角度来看,最脆弱的年龄组是14至18岁的青少年 [13],手机依赖的不利影响在青少年时期尤为严重 [14] [15]。

在现有文献中,研究人员还将手机依赖称为成瘾 [16]、问题使用 [17] 或过度使用 [18]。尽管这些用语通常有概念上的重叠,甚至有时可以互换使用,但根据早期关于互联网使用的学术讨论,研究者认为虽然手机依赖可能会对个体产生负面影响,但从临床障碍或真正的成瘾来看,这并不一定是病态的 [19] [20],因此,本研究将采用手机依赖这一术语。手机依赖是指由于使用手机不当而引起的一种对个体适应行为产生严重损害的持续且强烈的需求感和依赖感 [21]。

一般压力模型认为,那些经历过更多负性生活事件的人倾向于通过越轨或成瘾行为来释放他们的压力 [22] [23]。青少年正经历生理和心理的双重变化,他们面临更多的同伴冲突、生活失调和其他负性生活事件,而经历更多负性生活事件的青少年可能通过过度使用智能手机来缓解他们的负面情绪。以往研究也发现负性生活事件是问题性智能手机使用的重要风险因素 [24] [25] [26]。但目前还不清楚负性生活事件是否可以纵向区分青少年手机依赖发展轨迹的异质性亚组,有必要深入研究它们之间的联系。

2. 研究方法

2.1. 被试与研究程序

本研究对广西省高中生的手机依赖情况进行了三次追踪调查,数据采集频率是每半年一次,3次测验均以班级为单位统一组织纸笔问卷调查,本研究三次施测均是同一批主试,获得学校、家长以及学生的同意后开始正式施测。最终三次研究均参加的被试纳入后续的分析,共293名,其中男生109名(37.20%),女生184名(62.80%),平均年龄为17.46岁(SD = 0.60)。此外,多元方差分析结果显示,三次研究均参加的被试与流失的被试在性别(F= 2.40,p> 0.05)、第一次的手机依赖(F= 0.02,p> 0.05)、负性生活事件(F= 0.08,p> 0.05)上均不存在显著差异,表明被试流失是随机的 [27]。

2.2. 测量工具

2.2.1. 青少年生活事件量表

采用改良版的青少年生活事件量表 [28],该量表只评估负性生活事件。要求被试对题项中所描述的事件对自己的影响程度进行Likert 5点计分,从0 (没有影响)到4 (非常严重)。本研究的克隆巴赫α系数为0.89。

2.2.2. 手机依赖指数

采用基于Leung [29] 英文版的量表进行翻译的手机依赖指数(MPAI)来测量手机依赖 [30],共17个题项。采用Likert 5点计分,从1 (一点也不)到5 (总是)。在本研究的三次测量中,该量表的克隆巴赫α均为0.91。

2.2.3. 简明症状量表

采用简要症状清单 [31] 中用于测量抑郁和焦虑的两个分量表,这两个分量表分别有6个题项。已有研究表明抑郁与焦虑存在高度相关(r = 0.84 [32],故在本研究中,我们把这两个维度合并后成为心理痛苦这个潜变量的指标 [33]。采用Likert 5级计分,从1 (根本不)到5 (极其严重),得分越高,说明被试感知到的心理痛苦水平越高,本研究的克隆巴赫α系数为0.93。

2.3. 数据分析

本研究使用SPSS 26.0和Amos 23.0对纵向数据进行统计处理和分析,所进行的数据分析程序包括:Harman共同方法偏差检验、各变量描述性统计、相关性分析和中介效应分析,并控制T1时间点的手机依赖。采用以下指标确定估计模型的拟合程度:2/df小于5、CFI和TLI大于0.90 [34]、RMSEA和SRMR值小于或等于0.08表示模型是可接受的 [35]。

3. 研究结果

3.1. 共同方法偏差检验

本研究数据采用自我报告法,可能会产生共同方法偏差效应,因此,采用Harman单因素法进行检验。结果表明,共有17个特征值大于1的公因子,第一公因子的方差解释百分比为17.91%,小于临界标准40%,因此,本研究不存在明显的共同方法偏差 [36]。

3.2. 研究变量的描述性统计与相关

表1显示了描述性统计和主要变量之间的相关性,结果显示T1负性生活事件与T2心理痛苦之间存在显著的正相关(r= 0.20, p < 0.01);T1负性生活事件与T3手机依赖之间存在显著的正相关 (r= 0.19,p< 0.01);T2心理痛苦与T3手机依赖之间存在中等程度的显著正相关(r= 0.30,p< 0.01)。

Table 1. Mean standard deviation and correlation matrix of each variable

表1. 各变量的均值、标准差及相关矩阵

注:n = 293,*p< 0.05,**p< 0.01,***p< 0.001,下同。

3.3. T2心理痛苦在T1负性生活事件和T3手机依赖之间的中介作用

为了检验我们的假设和研究问题,首先建立了一个中介模型来检验T2心理痛苦在T1负性生活事件和T3手机依赖之间的中介作用。该模型拟合良好:c2/df = 2.695,SRMR = 0.063,CFI = 0.934,TLI = 0.913,RMSEA = 0.076。结果显示(图1所示),T1负性生活事件能正向预测T2心理痛苦(β= 0.22,t= 3.24,p< 0.01),T2心理痛苦也能正向预测T3手机依赖(β= 0.27,t= 4.35,p< 0.000),而T1负性生活事件对T3手机依赖的预测不存在显著差异(β= −0.01,t= −0.20,p> 0.05)。此外中介效应分析显示:路径:T1负性生活事件→T2心理痛苦→T3手机依赖的bootstrap95%置信区间[0.02, 0.13]的上、下限不包含0,表明这一路径中介效应显著,效应值为0.06,即T2心理痛苦在T1负性生活事件与T3手机依赖关系中起完全中介作用。其中介效应占总效应中的比例为ab/c = 0.22*0.27/0.07 = 0.85,即中介效应占总效应中的比例为85%。

Figure 1. Mediation diagram

图1. 中介作用示意图

4. 讨论

本研究基于一般压力模型 [22] 构建了一个发展级联模型,用于理解负性生活事件到青少年手机依赖之间的中介过程。结果发现,我们发现时间点2的心理痛苦水平在时间点1的有负性生活事件和时间点3的手机依赖之间起到完全中介作用,具体而言,T1负性生活事件正向预测T2心理痛苦水平,T2心理痛苦正向预测T3手机依赖水平,即T1负性生活事件通过影响T2心理痛苦水平,进而影响T3手机依赖水平,这支持了我们的假设。这表明在青少年手机依赖群体中,负性生活事件的发生,会使青少年产生焦虑、抑郁等负性情绪,而青少年心理痛苦水平越高,越容易产生手机依赖现象。本研究在过往研究的基础上,采用更适合于检验中介效应的纵向设计,揭示了随着时间推移负性生活事件影响手机依赖的过程,更好地支持了一般压力模型,强调了随情境因素变化而波动的心理痛苦水平是推动个体行为的诱因,个体会以手机依赖这种不良行为为代价去缓解由负性生活事件引起的负面情绪。

4.1. 负性生活事件对青少年心理痛苦的影响

从研究中可以看出,青少年经历的负性生活事件预示着随后的心理痛苦水平,即青少年经历的负性生活事件越多与随后更多的心理痛苦相关。这与文献中的横断面和纵向研究结果一致 [37] [38]。一项针对英国农村青少年的研究发现,负性生活事件对情绪问题有积极的预测作用 [37]。Johnson等人 [38] 发现,随着时间的推移,负性生活事件的增加,抑郁和焦虑症状也会增加。这一结果与Murberg和Bru [39] 一致,他们在挪威青少年的全国样本中发现消极生活事件和心理痛苦之间存在显著的正相关关系。Johnson等人[38]还发现,随着负性生活事件从童年晚期到青春期的累积,抑郁症状的发展轨迹呈现上升的发展趋势,负性生活事件可以看作是影响个体问题解决和心理适应过程的生活压力源。研究人员一致发现,经历更多负性生活事件的青少年更容易表现出更多的抑郁、焦虑症状 [40] [41]。

4.2. 心理痛苦对青少年手机依赖的影响

此外,我们还发现心理痛苦水平和手机依赖之间存在正相关。也就是说,心理痛苦水平越高的高中生越有可能出现手机依赖现象 [42] [43] [44]。这与之前的研究结果是一致的,即有抑郁、焦虑症状的人可能依赖手机来缓解他们的负面情绪 [45] [46] [47] [48] [49]。Young [50] 认为,网络成瘾者的冲动行为可以被看作是一种奖赏,这种奖赏能够缓解个体的紧张和焦虑情绪,因此会进一步促进这种网络成瘾行为的发展 [43],也就是说,当一个人心理痛苦越大的时候,越可能感到紧张和焦虑,这时候就有可能使用网络或智能手机来缓解这种情绪上的紧张。

4.3. 心理痛苦在负性生活事件与青少年手机依赖之间的中介作用

以往研究主要关注负性生活事件对手机依赖的直接作用,本研究通过追踪研究的方式考察了负性生活事件与手机依赖的影响机制,结果发现,在经历负性生活事件后,个体会因为后续心理痛苦水平的增加进而加剧手机依赖现象,进一步丰富了以往横断研究的结果,即心理痛苦中介了压力和技术相关的过度使用之间的联系 [51] [52],说明心理痛苦是联结负性生活事件与青少年手机依赖之间关系的重要“桥梁”。早期发生的负性生活事件可以通过增加青少年的心理痛苦程度来增加他们手机依赖的风险。本研究结果显示,青少年所经历的负性生活事件可能导致焦虑、抑郁症状。对他们来说,使用智能手机可能是一种有效但不健康的暂时放松方式。但是,智能手机的不合理使用也增加了手机依赖的风险。Lee [3] 的研究也发现,青少年手机依赖现象所反映的是一种超出建立社交关系的动机,这可能是青少年用来调节情绪的一种不良应对方式,如减少无聊感、压力、焦虑等,即通过手机网络来缓解日常生活压力事件所带来的紧张体验和消极情绪 [49]。这一发现也进一步支持了一般压力理论,并将其扩展到手机依赖现象,该理论认为,问题或成瘾行为是个体缓解压力引起的负面情绪的一种应对策略 [22] [23]。换句话说,当青少年遇到生活压力事件时,会产生焦虑、抑郁等负性情绪,那么手机依赖也许就成为了一种应对负性情绪的不良方式。我们的发现表明,帮助年轻人发展技能,以缓解由负性生活事件引起的负面情绪,将有助于减少手机依赖问题。

总体来看,本研究采用纵向设计揭示的中介效应强调了心理痛苦在情境因素(负性生活事件)与个体行为(青少年手机依赖)中的中介作用,凸显了心理痛苦是连接外部环境与个体行为的重要内部机制,在手机依赖领域为一般压力模型提供了稳健的证据支撑。进一步拓展了负性生活事件影响青少年手机依赖的时间窗口,凸显了负性生活事件给个体带来的痛苦与挫败是长期持续的,个体会通过过度使用手机以应对或逃避这种持续的痛苦。该结果通过揭示负性生活事件与青少年手机依赖的纵向关系,提醒实践者对于暴露在多重逆境下的青少年要给予长期的关注,并启示我们,对于处于不利成长环境中的青少年,帮助其缓解负性情绪是抵御负性生活事件对其手机依赖不利影响的重要途径。

参考文献

[1] Demirci, K., Orhan, H., Demirdas, A., Akpinar, A. and Sert, H. (2016) Validity and Reliability of the Turkish Version of the Smartphone Addiction Scale in a Younger Population. Klinik Psikofarmakoloji Bülteni-Bulletin of Clinical Psychopharmacology, 24, 226-234.
https://doi.org/10.5455/bcp.20140710040824
[2] Elhai, J.D., et al. (2017) Problematic Smartphone Use: A Conceptual Overview and Systematic Review of Relations with Anxiety and Depression Psychopathology. Journal of Affective Disorders, 207, 251-259.
https://doi.org/10.1016/j.jad.2016.08.030
[3] Lee, C. and Lee, S.J. (2017) Prevalence and Predictors of Smartphone Addiction Proneness among Korean Adolescents. Children and Youth Services Review, 77, 10-17.
https://doi.org/10.1016/j.childyouth.2017.04.002
[4] China Internet Network Information Center (2020) The 46th China Statistical Report on Internet Development.http://www.cnnic.cn
[5] Wang, P., Lei, L., Wang, X., Nie, J., Chu, X. and Jin, S. (2018) The Exacerbating Role of Per-ceived Social Support and the “Buffering” Role of Depression in the Relation between Sensation Seeking and Adolescent Smartphone Addiction. Personality and Individual Differences, 130, 129-134.
https://doi.org/10.1016/j.paid.2018.04.009
[6] Li, Y., Li, G.X., Liu, L. and Wu, H. (2020) Correlations between Mobile Phone Addiction and Anxiety, Depression, Impulsivity and Poor Sleep Quality among College Students: A Systematic Review and Meta-Analysis. Journal of Behavioral Addictions, 9, 551-571.
https://doi.org/10.1556/2006.2020.00057
[7] Contractor, A.A., Weiss, N.H., Tull, M.T. and Elhai, J.D. (2017) PTSD’s Relation with Problematic Smartphone Use: Mediating Role of Impulsivity. Computers in Human Behavior, 75, 177-183.
https://doi.org/10.1016/j.chb.2017.05.018
[8] Hadar, A., Hadas, I., Lazarovits, A., Alyagon, U., Eliraz, D. and Zangen, A. (2017) Answering the Missed Call: Initial Exploration of Cognitive and Electrophysiological Changes Associated with Smartphone Use and Abuse. PLoS ONE, 12, e0180094.
https://doi.org/10.1371/journal.pone.0180094
[9] Chen, J.W., Liang, Y.S., Mai, C.M., Zhong, X.Y. and Qu, C. (2016) General Deficit in Inhibitory Control of Excessive Smartphone Users: Evidence from an Event-Related Potential Study. Frontiers in Psychology, 7, Article No. 511.
https://doi.org/10.3389/fpsyg.2016.00511
[10] Dwyer, R.J., Kushlev, K. and Dunn, E.W. (2018) Smartphone Use Undermines Enjoyment of Face-to-Face Social Interactions. Journal of Experimental Social Psychology, 78, 233-239.
https://doi.org/10.1016/j.jesp.2017.10.007
[11] Nayak, J.K. (2018) Relationship among Smartphone Usage, Addiction, Academic Performance and the Moderating Role of Gender: A Study of Higher Education Students in India. Computers and Education, 123, 164-173.
https://doi.org/10.1016/j.compedu.2018.05.007
[12] Billieux, J., Philippot, P., Schmid, C., Maurage, P., De Mol, J. and Vander Linden, M. (2015) Is Dysfunctional Use of the Mobile Phone a Behavioural Addiction? Confronting Symptom-Based versus Process-Based Approaches. Clinical Psychology and Psychotherapy, 22, 460-468.
https://doi.org/10.1002/cpp.1910
[13] Lemola, S., Perkinson-Gloor, N., Brand, S., Dewald-Kaufmann, J.F. and Grob, A. (2015) Adolescents’ Electronic Media Use at Night, Sleep Disturbance and Depressive Symptoms in the Smartphone Age. Journal of Youth and Adolescence, 44, 405-418.
https://doi.org/10.1007/s10964-014-0176-x
[14] Haug, S., Castro, R.P., Kwon, M., Filler, A., Kowatsch, T. and Schaub, M.P. (2015) Smartphone Use and Smartphone Addiction among Young People in Switzerland. Journal of Behavioral Addictions, 4, 299-307.
https://doi.org/10.1556/2006.4.2015.037
[15] Jeong, S.H., Kim, H.J., Yum, J.Y. and Hwang, Y. (2016) What Type of Content Are Smartphone Users Addicted to?: SNS vs. Games. Computers in Human Behavior, 54, 10-17.
https://doi.org/10.1016/j.chb.2015.07.035
[16] Kwon, M., Lee, J.Y., Won, W.Y., Park, J.W., Min, J.A., Hahn, C., Kim, D.J. (2013) Development and Validation of a Smartphone Addiction Scale (SAS). PLoS ONE, 8, e56936.
https://doi.org/10.1371/journal.pone.0056936
[17] Kardefelt-Winther, D. (2014) A Conceptual and Methodological Critique of Internet Addiction Research: Towards a Model of Compensatory Internet Use. Computers in Human Behavior, 31, 351-354.
https://doi.org/10.1016/j.chb.2013.10.059
[18] Andalibi, N., Ozturk, P. and Forte, A. (2017) Sensitive Self-Disclosures, Responses and Social Support on Instagram: The Case of Depression. Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing, Portland, 25 February-1 March 2017, 1485-1500.
https://doi.org/10.1145/2998181.2998243
[19] Herrero, J., Torres, A., Vivas, P. and Urueña, A. (2019) Smartphone Addiction and Social Support: A Three-Year Longitudinal Study. Psychosocial Intervention, 28, 111-118.
https://doi.org/10.5093/pi2019a6
[20] Panova, T. and Carbonell, X. (2018) Is Smartphone Addiction Really an Addiction? Journal of Behavior Addiction, 7, 252-259.
https://doi.org/10.1556/2006.7.2018.49
[21] Yang, Y., Yen, J., Ko, C., Cheng, C. and Yen, C. (2010) The Association between Problematic Cellular Phone Use and Risky Behaviors and Low Self-Esteem among Taiwanese Adolescents. BMC Public Health, 10, Article No. 217.
https://doi.org/10.1186/1471-2458-10-217
[22] Agenw, R. (1992) Foundation for a General Strain Theory of Crime and Delinquency. Criminology, 30, 47-88.
https://doi.org/10.1111/j.1745-9125.1992.tb01093.x
[23] Jun, S. and Choi, E. (2015) Academic Stress and Internet Addiction from General Strain Theory Framework. Computers in Human Behavior, 49, 282-287.
https://doi.org/10.1016/j.chb.2015.03.001
[24] Liu, Q., Zhang, D., Yang, X., Zhang, C., Fan, C. and Zhou, Z. (2018) Perceived Stress and Mobile Phone Addiction in Chinese Adolescents: A Moderated Mediation Model. Computers in Human Behavior, 87, 247-253.
https://doi.org/10.1016/j.chb.2018.06.006
[25] Samaha, M. and Hawi, N.S. (2016) Relationships among Smartphone Addiction, Stress, Academic Performance and Satisfaction with Life. Computers in Human Behavior, 57, 321-325.
https://doi.org/10.1016/j.chb.2015.12.045
[26] Wang, J., Wang, H., Gaskin, J. and Wang, L. (2015) The Role of Stress and Motivation in Problematic Smartphone Use among College Students. Computers in Human Behavior, 53, 181-188.
https://doi.org/10.1016/j.chb.2015.07.005
[27] 张光珍, 梁宗保, 邓慧华, 陆祖宏. 学校氛围与青少年学校适应: 一项追踪研究[J]. 心理发展与教育, 2014, 30(4): 371-379.
[28] 刘贤臣, 刘连启, 杨杰, 柴福勋, 王爱祯, 孙良民, 赵贵芳, 马登岱. 青少年生活事件量表的编制与信度效度测试[J]. 山东精神医学, 1997(1): 15-19.
[29] Leung, L., Konijn, E.A., Tanis, M.A., Utz, S. and Linden, A. (2007) Leisure Boredom, Sensation Seeking, Self-Esteem, Addiction Symptoms and Patterns of Mobile Phone Use.
[30] 黄海, 牛露颖, 周春燕, 吴和鸣. 手机依赖指数中文版在大学生中的信效度检验[J]. 中国临床心理学杂志, 2014, 22(5): 835-838.
[31] Derogatis, L.R. and Melisaratos, N. (1983) The Brief Symptom Inventory: An Introductory Report. Psychological Medicine, 13, 595-605.
https://doi.org/10.1017/S0033291700048017
[32] Sellers, R.M., Caldwell, C.H., Schmeelk-Cone, K.H. and Zimmerman, M.A. (2003) Racial Identity, Racial Discrimination, Perceived Stress and Psychological Distress among African American Young Adults. Journal of Health and Social Behavior, 44, 302-317.
https://doi.org/10.2307/1519781
[33] Elkington, K.S., Bauermeister, J.A. and Zimmerman, M.A. (2010) Psycho-logical Distress, Substance Use, and HIV/STI Risk Behaviors among Youth. Journal of Youth and Adolescence, 39, 514-527.
https://doi.org/10.1007/s10964-010-9524-7
[34] Salisbury, W.D., Chin, W.W., Gopal, A. and Newsted, P.R. (2002) Research Report: Better Theory through Measurement-Developing a Scale to Capture Consensus on Appropriation. Information Systems Research, 13, 91-103.
https://doi.org/10.1287/isre.13.1.91.93
[35] Byrne, B.M. (2013) Structural Equation Modeling with EQS: Basic Concepts, Applications and Programming. Routledge, Portland.
[36] 熊红星, 张璟, 叶宝娟, 郑雪, 孙配贞. 共同方法变异的影响及其统计控制途径的模型分析[J]. 心理科学进展, 2012, 20(5): 757-769.
[37] Flouri, E. and Panourgia, C. (2011) Gender Differences in the Pathway from Adverse Life Events to Adolescent Emotional and Behavioural Problems via Stressful Cognitive Errors. British Journal of Developmental Psychology, 29, 234-252.
https://doi.org/10.1348/0261-510X.002002
[38] Johnson, D.P., Whisman, M.A., Corley, R.P., Hewitt, J.K. and Rhee, S.H. (2012) Association between Depressive Symptoms and Negative Dependent Life Events from Late Childhood to Adolescence. Journal of Abnormal Child Psychology, 40, 1385-1400.
https://doi.org/10.1007/s10802-012-9642-7
[39] Murberg, T.A. and Bru, E. (2004) Social Support, Negative Life Events and Emotional Problems among Norwegian Adolescents. School Psychology International, 25, 387-403.
https://doi.org/10.1177/0143034304048775
[40] Sanchez, Y.M., Lambert, S.F. and Ialongo, N.S. (2012) Life Events and Depressive Symptoms in African American Adolescents: Do Ecological Domains and Timing of Life Events Matter? Journal of Youth and Adolescence, 41, 438-448.
https://doi.org/10.1007/s10964-011-9689-8
[41] Gao, J.L., Wang, L.H., Yin, X.Q., Hsieh, H.F., Rost, D.H., Zimmerman, M.A. and Wang, J.L. (2019) The Promotive Effects of Peer Support and Active Coping in Relation to Negative Life Events and Depression in Chinese Adolescents at Boarding Schools. Current Psychology, 40, 2251-2260.
https://doi.org/10.1007/s12144-019-0143-5
[42] Bianchi, A. and Phillips, J.G. (2005) Psychological Predictors of Problem Mobile Phone Use. Cyber Psychology and Behavior, 8, 39-51.
https://doi.org/10.1089/cpb.2005.8.39
[43] Chiu, S. (2014) The Relationship between Life Stress and Smartphone Addiction on Taiwanese University Student: A Mediation Model of Learning Self-Efficacy and Social Self-Efficacy. Computers in Human Behavior, 34, 49-57.
https://doi.org/10.1016/j.chb.2014.01.024
[44] Nikhita, C.S., Jadhav, P.R. and Ajinkya, S. (2015) Prevalence of Mobile Phone Dependence in Secondary School Adolescents. Journal of Clinical and Diagnostic Research, 9, VC06-VC09.
https://doi.org/10.7860/JCDR/2015/14396.6803
[45] Babadi-Akashe, Z., Zamani, B.E., Abedini, Y., Akbari, H. and Hedayati, N. (2014) The Relationship between Mental Health and Addiction to Mobile Phones among University Students of Shahrekord, Iran. Addict Health, 6, 93-99.
[46] Kim, J., Seo, M. and David, P. (2015) Alleviating Depression Only to Become Problematic Mobile Phone Users: Can Face-to-Face Communication Be the Antidote? Computer in Human Behavior, 51, 440-447.
https://doi.org/10.1016/j.chb.2015.05.030
[47] Liau, A.K., Choo, H., Li, D., Gentile, D.A., Sim, T. and Khoo, A. (2015) Pathological Video-Gaming among Youth: A Prospective Study Examining Dynamic Protective Factors. Addiction Research and Theory, 23, 301-308.
https://doi.org/10.3109/16066359.2014.987759
[48] Wang, J.L., Gaskin, J., Wang, H.Z. and Liu, D. (2016) Life Satisfaction Moderates the Associations between Motives and Excessive Social Networking Site Usage. Addiction Research and Theory, 24, 450-457.
https://doi.org/10.3109/16066359.2016.1160283
[49] Holmgren, H.G. and Coyne, S.M. (2017) Can’t Stop Scrolling: Pathological Use of Social Networking Sites in Emerging Adulthood. Addiction Research and Theory, 25, 375-382.
https://doi.org/10.1080/16066359.2017.1294164
[50] Young, K.S. (2007) Cognitive Behavior Therapy with Internet Addicts: Treatment Outcomes and Implications. Cyber Psychology and Behavior, 10, 671-679.
https://doi.org/10.1089/cpb.2007.9971
[51] Zhao, F., Zhang, Z.H., Bi, L., Wu, X.S., Wang, W.J., Li, Y.F. and Sun, Y.H. (2017) The Association between Life Events and Internet Addiction among Chinese Vocational School Students: The Mediating Role of Depression. Computer in Human Behavior, 70, 30-38.
https://doi.org/10.1016/j.chb.2016.12.057
[52] Xu, T.T., Wang, H.Z., Fonseca, W., Zimmerman, M.A., Rost, D.H., Gaskin, J. and Wang, J.L. (2019) The Relationship between Academic Stress and Adolescents’ Problematic Smartphone Usage. Addiction Research and Theory, 27, 162-169.
https://doi.org/10.1080/16066359.2018.1488967

为你推荐




Baidu
map