树和路的乘积图的广义染色数及博弈染色数
The Generalized Coloring Number and Game Coloring Number of Product Graph of Treeand Path
DOI:10.12677/AAM.2022.111039,PDF,HTML,被引量下载: 307浏览: 448
作者:刘佳丽:浙江师范大学数学与计算机科学学院,浙江 金华
关键词:乘积图博弈染色数广义染色数Product GraphGame Coloring NumberGeneralized Coloring Number
摘要:本文讨论了简单图树和路的乘积图,给出了树和路的乘积图的一个线性序,介绍了它的广义染色数,同时给出了树和路的乘积图最大出度限制为一个常数的一个定向,并由此介绍了树和路的乘积图的博弈染色数。
Abstract:This paper considers the product graph of simple graph tree and path, gives a linear order of the product graph of tree and path, and introduces the generalized coloring number of the product graph of tree and path. Meanwhile, we give an orientation that the maximum out-degree of the product graph of tree and path is at most a constant and introduce the game coloring number of the product graph of tree and path.
文章引用:刘佳丽. 树和路的乘积图的广义染色数及博弈染色数[J]. 应用数学进展, 2022, 11(1): 318-325. https://doi.org/10.12677/AAM.2022.111039

参考文献

[1] Kierstead, H.A. and Yang D. (2003) Orderings on Graphs and Game Coloring Number. Order,20, 255-264.
https://doi.org/10.1023/B:ORDE.0000026489.93166.cb
[2] Bodlaender, H.L. (1991) On the Complexity of Some Coloring Games. In: M¨ohring, R.H., Eds., Graph-Theoretic Concepts in Computer Science. WG 1990. Lecture Notes in Computer Science, Springer, Berlin, 30-40.
https://doi.org/10.1007/3-540-53832-1 29
[3] Kierstead, H.A. (2005) Asymmetric Graph Coloring Games. Journal of Graph Theory, 48, 169-185.
https://doi.org/10.1002/jgt.20049
[4] Kierstead, H.A. and Yang, D. (2005) Very Asymmetric Marking Games. Order, 22, 93-107.
https://doi.org/10.1007/s11083-005-9012-y
[5] Yang, D. and Zhu, X. (2008) Activation Strategy for Asymmetric Marking Games. European Journal of Combinatorics, 29, 1123-1132.
https://doi.org/10.1016/j.ejc.2007.07.004

为你推荐



Baidu
map