[1] |
World Health Organization (2003) International Classification of Diseases 10th Revision (ICD-10). http://www.who.int/classifications/icd/en |
[2] |
Reilly, M.T., Noronha, A., Goldman, D., et al. (2017) Genetic Studies of Alcohol Dependence in the Context of the Addiction Cycle. Neuropharmacology, 122, 3-21. https://doi.org/10.1016/j.neuropharm.2017.01.017 |
[3] |
Integrative, H.M.P. (iHMP) Research Network Consortium (2019) The Integrative Human Microbiome Project. Nature, 569, 641-648. https://doi.org/10.1038/s41586-019-1238-8 |
[4] |
Pitocco, D., Di Leo, M., Tartaglione, L., et al. (2020) The Role of Gut Microbiota in Mediating Obesity and Diabetes Mellitus. European Review for Medical and Pharmacological Sciences, 24, 1548-1562. |
[5] |
Scheithauer, T.P.M., Rampanelli, E., Nieuwdorp, M., et al. (2020) Gut Microbiota as a Trigger for Metabolic Inflammation in Obesity and Type 2 Diabetes. Frontiers in Immunology, 11, 2546. https://doi.org/10.3389/fimmu.2020.571731 |
[6] |
Witkowski, M., Weeks, T.L. and Hazen, S.L. (2020) Gut Microbiota and Cardiovascular Disease. Circulation Research, 127, 553-570. https://doi.org/10.1161/CIRCRESAHA.120.316242 |
[7] |
Vascellari, S., Palmas, V., Melis, M., et al. (2020) Gut Microbiota and Metabolome Alterations Associated with Parkinson’s Disease. Msystems, 5, e00561-20. https://doi.org/10.1128/mSystems.00561-20 |
[8] |
Jiang, H.Y., Zhang, X., Yu, Z.H., et al. (2018) Altered Gut Microbiota Profile in Patients with Generalized Anxiety Disorder. Journal of Psychiatric Research, 104, 130-136. https://doi.org/10.1016/j.jpsychires.2018.07.007 |
[9] |
Liang, S., Wu, X., Hu, X., et al. (2018) Recognizing Depression from the Microbiota-Gut-Brain Axis. International Journal of Molecular Sciences, 19, 1592. https://doi.org/10.3390/ijms19061592 |
[10] |
Zhu, F., Ju, Y., Wang, W., et al. (2020) Metagenome-Wide Association of Gut Microbiome Features for Schizophrenia. Nature Communications, 11, Article No. 1612. https://doi.org/10.1038/s41467-020-15457-9 |
[11] |
Jiang, C., Li, G., Huang, P., et al. (2017) The Gut Microbiota and Alzheimer’s Disease. Journal of Alzheimer’s Disease, 58, 1-15. https://doi.org/10.3233/JAD-161141 |
[12] |
De Angelis, M., Francavilla, R., Piccolc, M., et al. (2015) Autism Spectrum Disorders and Intestinal Microbiota. Gut Microbes, 6, 207-213. https://doi.org/10.1080/19490976.2015.1035855 |
[13] |
Lozupone, C.A., Stombaugh, J.I., Gordon, J.I., et al. (2012) Diversity, Stability and Resilience of the Human Gut Microbiota. Nature, 489, 220-230. https://doi.org/10.1038/nature11550 |
[14] |
Breitbart, M., Hewson, I., Felts, B., et al. (2003) Metagenomic Analyses of an Uncultured Viral Community from Human Feces. Journal of Bacteriology, 185, 6220-6223. https://doi.org/10.1128/JB.185.20.6220-6223.2003 |
[15] |
朱锡群, 易伟. 微生物群–脑–肠轴和中枢神经系统研究进展[J]. 疑难病杂志, 2018, 17(7): 748-752. |
[16] |
Grenham, S., Clarke, G., Cryan, J.F., et al. (2011) Brain-Gut-Microbe Communication in Health and Disease. Frontiers in Physiology, 2, Article No. 94. https://doi.org/10.3389/fphys.2011.00094 |
[17] |
Bravo, J.A., Forsythe, P., Chew, M., et al. (2011) Ingestion of Lactobacillus Strain Regulates Emotional Behavior and Central GABA Receptor Expression in a Mouse via the Vagus Nerve. Proceedings of the National Academy of Sciences of the United States of America, 108, 16050-16055. https://doi.org/10.1073/pnas.1102999108 |
[18] |
Lvte, M. (2013) Microbial Endocrinology in the Microbiome-Gut-Brain Axis: How Bacterial Production and Utilization of Neurochemicals Influence Behavior. PLOS Pathogens, 9, e1003726. https://doi.org/10.1371/journal.ppat.1003726 |
[19] |
Montiel-Castro, A.J., Gonzalez-Cervantes, R.M., Bravo-Ruiseco, G., et al. (2013) The Microbiota-Gut-Brain Axis: Neurobehavioral Correlates, Health and Sociality. Frontiers in Integrative Neuroscience, 7, Article No. 70. https://doi.org/10.3389/fnint.2013.00070 |
[20] |
Brandscheid, C., Schuck, F., Reinhardt, S., et al. (2017) Altered Gut Microbiome Composition and Tryptic Activity of the 5xFAD Alzheimer’s Mouse Model. Journal of Alzheimer’s Dis-ease, 56, 775-788. https://doi.org/10.3233/JAD-160926 |
[21] |
Holland, A.M., Bon-Frauches, A.C., Keszthelyi, D., et al. (2021) The Enteric Nervous System in Gastrointestinal Disease Etiology. Cellular and Molecular Life Sciences, 78, 4713-4733. https://doi.org/10.1007/s00018-021-03812-y |
[22] |
Kabouridis, P.S., Lasrado, R., Mccallum, S., et al. (2015) The Gut Microbiota Keeps Enteric Glial Cells on the Move; Prospective Roles of the Gut Epithelium and Immune System. Gut Microbes, 6, 398-403. https://doi.org/10.1080/19490976.2015.1109767 |
[23] |
De Vadder, F., Grasset, E., Manneras, H.L., et al. (2018) Gut Microbiota Regulates Maturation of the Adult Enteric Nervous System via Enteric Serotonin Networks. Proceedings of the National Academy of Sciences of the United States of America, 115, 6458-6463. https://doi.org/10.1073/pnas.1720017115 |
[24] |
Dalile, B., Vanoudenhove, L., Vervliet, B., et al. (2019) The Role of Short-Chain Fatty Acids in Microbiota-Gut-Brain Communication. Nature Reviews Gastroenterology & Hepatology, 16, 461-478. https://doi.org/10.1038/s41575-019-0157-3 |
[25] |
Lyte, M., Li, W., Opitz, N., et al. (2006) Induction of Anxie-ty-Like Behavior in Mice during the Initial Stages of Infection with the Agent of Murine Colonic Hyperplasia Citrobacter rodentium. Physiology & Behavior, 89, 350-357. https://doi.org/10.1016/j.physbeh.2006.06.019 |
[26] |
Goehler, L.E., Park, S.M., Opitz, N., et al. (2008) Campylo-bacter jejuni Infection Increases Anxiety-Like Behavior in the Holeboard: Possible Anatomical Substrates for Vis-cerosensory Modulation of Exploratory Behavior. Brain, Behavior, and Immunity, 22, 354-366. https://doi.org/10.1016/j.bbi.2007.08.009 |
[27] |
Bercik, P., Park, A.J., Sinclair, D., et al. (2011) The Anxiolytic Ef-fect of Bifidobacterium longum NCC3001 Involves Vagal Pathways for Gut-Brain Communication. Neurogastroenter-ology & Motility, 23, 1132-1139. https://doi.org/10.1111/j.1365-2982.2011.01796.x |
[28] |
Diaz Heijtz, R., Wang, S., Anuar, F., et al. (2011) Normal Gut Microbiota Modulates Brain Development and Behavior. Proceedings of the National Academy of Sciences of the United States of America, 108, 3047-3052. https://doi.org/10.1073/pnas.1010529108 |
[29] |
Smith, P.M., Howitt, M.R., Panikov, N., et al. (2013) The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic Treg Cell Homeostasis. Science (New York, NY), 341, 569-573. https://doi.org/10.1126/science.1241165 |
[30] |
Louis, P. and Flint, H.J. (2009) Diversity, Metabolism and Microbial Ecology of Butyrate-Producing Bacteria from the Human Large Intestine. FEMS Microbiology Letters, 294, 1-8. https://doi.org/10.1111/j.1574-6968.2009.01514.x |
[31] |
Macfabe, D.F., Cain, N.E., Boon, F., et al. (2011) Effects of the Enteric Bacterial Metabolic Product Propionic Acid on Object-Directed Behavior, Social Behavior, Cognition, and Neuroinflammation in Adolescent Rats: Relevance to Autism Spectrum Disorder. Behavioural Brain Research, 217, 47-54. https://doi.org/10.1016/j.bbr.2010.10.005 |
[32] |
Gorski, J.A., Zeiler, S.R., Tamowski, S., et al. (2003) Brain-Derived Neurotrophic Factor Is Required for the Maintenance of Cortical Dendrites. The Journal of Neuroscience, the Official Journal of the Society for Neuroscience, 23, 6856-6865. https://doi.org/10.1523/JNEUROSCI.23-17-06856.2003 |
[33] |
Kuhn, K.A. and Stappenbeck, T.S. (2013) Peripheral Education of the Immune System by the Colonic Microbiota. Seminars in Immunology, 25, 364-369. https://doi.org/10.1016/j.smim.2013.10.002 |
[34] |
Gareau, M.G., Wine, E., Rodrigues, D.M., et al. (2011) Bacterial Infection Causes Stress-Induced Memory Dysfunction in Mice. Gut, 60, 307-317. https://doi.org/10.1136/gut.2009.202515 |
[35] |
Lewis, S. and Cochrane, S. (2007) Alteration of Sulfate and Hydro-gen Metabolism in the Human Colon by Changing Intestinal Transit Rate. The American Journal of Gastroenterology, 102, 624-633. https://doi.org/10.1111/j.1572-0241.2006.01020.x |
[36] |
Tillisch, K., Labus, J., Kilpatrick, L., et al. (2013) Con-sumption of Fermented Milk Product with Probiotic Modulates Brain Activity. Gastroenterology, 144, 1394-1401. https://doi.org/10.1053/j.gastro.2013.02.043 |
[37] |
Messaoudi, M., Lalonde, R., Violle, N., et al. (2011) Assessment of Psychotropic-Like Properties of a Probiotic Formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in Rats and Human Subjects. The British Journal of Nutrition, 105, 755-764. https://doi.org/10.1017/S0007114510004319 |
[38] |
Sudo, N., Chida, Y., Aiba, Y., et al. (2004) Postnatal Microbial Colonization Programs the Hypothalamic-Pituitary-Adrenal System for Stress Response in Mice. The Journal of Physi-ology, 558, 263-275. https://doi.org/10.1113/jphysiol.2004.063388 |
[39] |
Alverdy, J., Holbaook, C., Rocha, F., et al. (2000) Gut-Derived Sepsis Occurs When the Right Pathogen with the Right Virulence Genes Meets the Right Host: Evidence for in Vivo Vir-ulence Expression in Pseudomonas aeruginosa. Annals of Surgery, 232, 480-489. https://doi.org/10.1097/00000658-200010000-00003 |
[40] |
Demaude, J., Salvador-Cartier, C., Fioramonti, J., et al. (2006) Phenotypic Changes in Colonocytes Following Acute Stress or Activation of Mast Cells in Mice: Implications for Delayed Epithelial Barrier Dysfunction. Gut, 55, 655-661. https://doi.org/10.1136/gut.2005.078675 |
[41] |
Bailey, M.T. and Coe, C.L. (1999) Maternal Separation Disrupts the Integrity of the Intestinal Microflora in Infant Rhesus Monkeys. Developmental Psychobiology, 35, 146-155. https://doi.org/10.1002/(SICI)1098-2302(199909)35:2<146::AID-DEV7>3.0.CO;2-G |
[42] |
Dubinkina, V.B., Tyakht, A.V., Ilina, E.N., et al. (2015) Metagenomic Analysis of Taxonomic and Functional Changes in Gut Microbiota of Patients with Alcoholic Dependence Syndrome. Biomeditsinskaia Khimiia, 61, 742-749. https://doi.org/10.18097/PBMC20156106742 |
[43] |
Mutlu, E.A., Gillevet, P.M., Rangwala, H., et al. (2012) Colon-ic Microbiome Is Altered in Alcoholism. American Journal of Physiology Gastrointestinal and Liver Physiology, 302, G966-G978. https://doi.org/10.1152/ajpgi.00380.2011 |
[44] |
Kosnicki, K.L., Penprase, J.C., Cintora, P., et al. (2019) Effects of Moderate, Voluntary Ethanol Consumption on the Rat and Human Gut Microbiome. Addiction Biology, 24, 617-630. https://doi.org/10.1111/adb.12626 |
[45] |
Leclercq, S., Matamoros, S., Cani, P.D., et al. (2014) Intestinal Permeabil-ity, Gut-Bacterial Dysbiosis, and Behavioral Markers of Alcohol-Dependence Severity. Proceedings of the National Academy of Sciences of the United States of America, 111, E4485-4493. https://doi.org/10.1073/pnas.1415174111 |
[46] |
Bjorkhaug, S.T., Aanes, H., Neupane, S.P., et al. (2019) Character-ization of Gut Microbiota Composition and Functions in Patients with Chronic Alcohol Overconsumption. Gut Microbes, 10, 663-675. https://doi.org/10.1080/19490976.2019.1580097 |
[47] |
Donnadieu-Rigole, H., Pansu, N., Mura, T., et al. (2018) Beneficial Effect of Alcohol Withdrawal on Gut Permeability and Microbial Translocation in Patients with Alcohol Use Disorder. Alcoholism, Clinical and Experimental Research, 42, 32-40. https://doi.org/10.1111/acer.13527 |
[48] |
Barr, T., Lewis, S.A., Sureshchandra, S., et al. (2019) Chronic Ethanol Consumption Alters Lamina Propria Leukocyte Response to Stimulation in a Region-Dependent Manner. FASEB Jour-nal, 33, 7767-7777. https://doi.org/10.1096/fj.201802780R |
[49] |
Hillemacher, T., Bachmann, O., Kahl, K.G., et al. (2018) Alcohol, Mi-crobiome, and Their Effect on Psychiatric Disorders. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 85, 105-115. https://doi.org/10.1016/j.pnpbp.2018.04.015 |
[50] |
Leclercq, S., Cani, P.D., Neyrinck, A.M., et al. (2012) Role of Intestinal Permeability and Inflammation in the Biological and Behavioral Control of Alcohol-Dependent Subjects. Brain, Behavior, and Immunity, 26, 911-918. https://doi.org/10.1016/j.bbi.2012.04.001 |
[51] |
Leclercq, S., De Saeger, C., Delzenme, N., et al. (2014) Role of In-flammatory Pathways, Blood Mononuclear Cells, and Gut-Derived Bacterial Products in Alcohol Dependence. Biological Psychiatry, 76, 725-733. https://doi.org/10.1016/j.biopsych.2014.02.003 |
[52] |
Zhou, C., Zhao, J., Li, J., et al. (2013) Acute Ethanol Admin-istration Inhibits Toll-Like Receptor 4 Signaling Pathway in Rat Intestinal Epithelia. Alcohol (Fayetteville, NY), 47, 231-239. https://doi.org/10.1016/j.alcohol.2013.01.003 |
[53] |
Bishehsari, F., Magno, E., Swanson, G., et al. (2017) Alcohol and Gut-Derived Inflammation. Alcohol Research, 38, 163-171. |
[54] |
Hoyt, L.R., Randall, M.J., Ather, J.L., et al. (2017) Mitochondrial ROS Induced by Chronic Ethanol Exposure Promote Hyper-Activation of the NLRP3 Inflam-masome. Redox Biology, 12, 883-896. https://doi.org/10.1016/j.redox.2017.04.020 |
[55] |
Amaral, F.A., Costa, V.V., Tavares, L.D., et al. (2012) NLRP3 Inflammasome-Mediated Neutrophil Recruitment and Hypernociception Depend on Leukotriene B(4) in a Murine Model of Gout. Arthritis & Rheumatology, 64, 474-484. https://doi.org/10.1002/art.33355 |
[56] |
Wen, H., Gris, D., Lei, Y., et al. (2011) Fatty Acid-Induced NLRP3-ASC Inflammasome Activation Interferes with Insulin Signaling. Nature Immunology, 12, 408-415. https://doi.org/10.1038/ni.2022 |
[57] |
Kanak, M.A., Shahbazov, R., Yoshimatsu, G., et al. (2017) A Small Molecule Inhibitor of NFkappaB Blocks ER Stress and the NLRP3 Inflammasome and Prevents Progression of Pancreatitis. Journal of Gastroenterology, 52, 352-365. https://doi.org/10.1007/s00535-016-1238-5 |
[58] |
Lu, Y.C., Yeh, W.C. and Ohashi, P.S. (2008) LPS/TLR4 Signal Transduction Pathway. Cytokine, 42, 145-151. https://doi.org/10.1016/j.cyto.2008.01.006 |
[59] |
Takada, H. and Uehara, A. (2006) Enhancement of TLR-Mediated Innate Immune Responses by Peptidoglycans through NOD Signaling. Current Pharmaceutical Design, 12, 4163-4172. https://doi.org/10.2174/138161206778743510 |
[60] |
Leclercq, S., Le Roy, T., Furgiuele, S., et al. (2020) Gut Mi-crobiota-Induced Changes in beta-Hydroxybutyrate Metabolism Are Linked to Altered Sociability and Depression in Al-cohol Use Disorder. Cell Reports, 33, Article ID: 108238. https://doi.org/10.1016/j.celrep.2020.108238 |
[61] |
Lowe, P.P., Gyongyosi, B., Satishchandran, A., et al. (2017) Alcohol-Related Changes in the Intestinal Microbiome Influence Neutrophil Infiltration, Inflammation and Steatosis in Early Alcoholic Hepatitis in Mice. PLoS ONE, 12, e0174544. https://doi.org/10.1371/journal.pone.0174544 |
[62] |
Boschloo, L., Vogelzangs, N., Van Den Brink, W., et al. (2013) Depressive and Anxiety Disorders Predicting First Incidence of Alcohol Use Disorders: Results of the Netherlands Study of Depression and Anxiety (NESDA). Journal of Clinical Psychiatry, 74, 1233-1240. https://doi.org/10.4088/JCP.12m08159 |
[63] |
Mellentin, A.I., Nielsen, B., Stenager, E., et al. (2015) The Effect of Co-Morbid Depression and Anxiety on the Course and Outcome of Alcohol Outpatient Treatment: A Naturalistic Prospective Cohort Study. Nordic Journal of Psychiatry, 69, 331-338. https://doi.org/10.3109/08039488.2014.981857 |
[64] |
Clarke, G., Grenham, S., Scully, P., et al. (2013) The Microbiome-Gut-Brain Axis during Early Life Regulates the Hippocampal Serotonergic System in a Sex-Dependent Manner. Molecular Psychiatry, 18, 666-673. https://doi.org/10.1038/mp.2012.77 |
[65] |
Xiao, H.W., Ge, C., Feng, G.X., et al. (2018) Gut Microbiota Modulates Alcohol Withdrawal-Induced Anxiety in Mice. Toxicology Letters, 287, 23-30. https://doi.org/10.1016/j.toxlet.2018.01.021 |
[66] |
Xu, Z., Liu, Z., Dong, X., et al. (2018) Fecal Microbiota Transplantation from Healthy Donors Reduced Alcohol-Induced Anxiety and Depression in an Animal Model of Chronic Alcohol Exposure. The Chinese Journal of Physiology, 61, 360-371. |