[1] |
Hawley, S.A., Ross, F.A., Russell, F.M., et al. (2020) Mechanism of Activation of AMPK by Cordycepin. Cell Chemi-cal Biology, 27, 214-222.E4. https://doi.org/10.1016/j.chembiol.2020.01.004 |
[2] |
Cunningham, K.G., Manson, W., Spring, F.S., et al. (1950) Cordycepin, a Metabolic Product Isolated from Cultures of Cordyceps militaris (Linn.) Link. Nature, 166, 949. https://doi.org/10.1038/166949a0 |
[3] |
Chen, Y.C., Chen, Y.H., Pan, B.S., et al. (2017) Func-tional Study of Cordyceps sinensis and Cordycepin in Male Reproduction: A Review. Journal of Food and Drug Analy-sis, 25,197-205. https://doi.org/10.1016/j.jfda.2016.10.020 |
[4] |
Zhou, X.X., Luo, L.P., Dressel, W., et al. (2008) Cordycepin Is an Immunoregulatory Active Ingredient of Cordyceps sinensis. The American Journal of Chinese Medi-cine, 36, 967-980. https://doi.org/10.1142/S0192415X08006387 |
[5] |
Xiong, Y., Zhang, S., Xu, L., et al. (2013) Suppression of T-Cell Activation in Vitro and in Vivo by Cordycepin from Cordyceps militaris. Journal of Surgical Re-search, 185, 912-922. https://doi.org/10.1016/j.jss.2013.06.057 |
[6] |
Ryu, E.H., Son, M.K., Lee, M.J., et al. (2014) Cordycepin Is a Novel Chemical Suppressor of Epstein-Barr Virus Replication. Oncoscience, 1, 866-881. https://doi.org/10.18632/oncoscience.110 |
[7] |
Clercq, E.D. (2015) Curious (Old and New) Antiviral Nucleoside Analogues with Intriguing Therapeutic Potential. Current Medicinal Chemistry, 22, 3866-3880. https://doi.org/10.2174/0929867322666150625094705 |
[8] |
Lei, J., Wei, Y., Song, P., et al. (2018) Cordycepin Inhibits LPS-Induced Acute Lung Injury by Inhibiting Inflammation and Oxidative Stress. European Journal of Phar-macology, 818, 110-114. https://doi.org/10.1016/j.ejphar.2017.10.029 |
[9] |
Park, E.S., Kang, D.H., Yang, M.K., et al. (2014) Cordycepin, 3′-Deoxyadenosine, Prevents Rat Hearts from Ischemia/Reperfusion Injury via Activation of Akt/GSK-3β/p70S6K Sig-naling Pathway and HO-1 Expression. Cardiovascular Toxicology, 14, 1-9. https://doi.org/10.1007/s12012-013-9232-0 |
[10] |
Guo, P., Kai, Q., Gao, J., et al. (2010) Cordycepin Prevents Hy-perlipidemia in Hamsters Fed a High-Fat Diet via Activation of AMP-Activated Protein Kinase. Journal of Pharmaco-logical Sciences, 113, 395-403. |
[11] |
Gong, X.B., Li, T.J., Wan, R.Z., et al. (2021) Cordycepin Attenuates High-Fat Di-et-Induced Non-Alcoholic Fatty Liver Disease via Down-Regulation of Lipid Metabolism and Inflammatory Responses. International Immunopharmacology, 91, Article ID: 107173. https://doi.org/10.1016/j.intimp.2020.107173 |
[12] |
Tan, L., Song, X.M.T., Ren, Y.L., et al. (2020) An-ti-Inflammatory Effects of Cordycepin: A Review. Phytotherapy Research, 35, 1284-1297. https://doi.org/10.1002/ptr.6890 |
[13] |
Govindula, A., Pai, A., Baghel, S., et al. (2021) Molecular Mechanisms of Cordycepin Emphasizing Its Potential against Neuroinflammation: An Update. European Journal of Pharmacology, 908, Article ID: 174364. https://doi.org/10.1016/j.ejphar.2021.174364 |
[14] |
Jeong, J.W. and Choi, Y.H. (2015) Anti-Cancer Properties and Relevant Mechanisms of Cordycepin, an Active Ingredient of the Insect Fungus Cordyceps spp. Journal of Life Science, 25, 607-614. https://doi.org/10.5352/JLS.2015.25.5.607 |
[15] |
Özenver, N., Boulos, J.C. and Efferth, T. (2021) Activity of Cordycepin from Cordyceps sinensis against Drug-Resistant Tumor Cells as Determined by Gene Expression and Drug Sensitivity Profiling. Natural Product Communications, 16, 1-12. https://doi.org/10.1177/1934578X21993350 |
[16] |
Ahn, Y.J., Park, S.J., Lee, S.G., et al. (2000) Cordycepin: Selec-tive Growth Inhibitor Derived from Liquid Culture of Cordyceps militaris against Clostridium spp. Journal of Agricul-tural and Food Chemistry, 48, 2744-2748. https://doi.org/10.1021/jf990862n |
[17] |
高苏, 马婕馨, 刘警鞠, 等. 虫草素的抑菌活性及机理研究[J]. 生物技术通报, 2021, 37(8): 137-144. |
[18] |
Wang, Y., Pei, Z.J., Lou, Z.X., et al. (2021) Evaluation of Anti-Biofilm Capability of Cordycepin against Candida albicans. Infection and Drug Resistance, 14, 435-448. |
[19] |
Wang, S.M., Lee, L.J., Lin, W.W., et al. (1998) Effects of a Water-Soluble Extract of Cordyceps sinensis on Steroidogenesis and Capsular Mor-phology of Lipid Droplets in Cultured Rat Adrenocortical Cells. Journal of Cellular Biochemistry, 69, 483-489. https://doi.org/10.1002/(SICI)1097-4644(19980615)69:4%3C483::AID-JCB9%3E3.0.CO;2-J |
[20] |
Leu, S.F., Song, L.P., Pao, H.Y., et al. (2011) The in Vivo and in Vitro Stimulatory Effects of Cordycepin on Mouse Leydig Cell Steroidogenesis. Bioscience Biotechnology and Biochemistry, 75, 723-731. https://doi.org/10.1271/bbb.100853 |
[21] |
Lin, W.H., Tsai, M.T., Chen, Y.S., et al. (2007) Improvement of Sperm Production in Subfertile Boars by Cordyceps militaris Supplement. American Journal of Chinese Medicine, 35, 631-641. https://doi.org/10.1142/S0192415X07005120 |
[22] |
Chang, Y., Jeng, K.C., Huang, K.F., et al. (2008) Effect of Cordyceps Militaris Supplementation on Sperm Production, Sperm Motility and Hormones in Sprague-Dawley Rats. American Journal of Chinese Medicine, 36, 849-859. https://doi.org/10.1142/S0192415X08006296 |
[23] |
Sohn, S.H., Lee, S.C., Hwang, S.Y., et al. (2012) Effect of Long-Term Administration of Cordycepin from Cordyceps militaris on Testicular Function in Middle-Aged Rats. Planta Medica, 78, 1620-1625. |
[24] |
Kopalli, S.R., Cha, K.M., Lee, S.H., et al. (2019) Cordycepin, an Active Constituent of Nutrient Powerhouse and Potential Medicinal Mushroom Cordyceps militaris Linn., Ameliorates Age-Related Testicular Dysfunction in Rats. Nutrients, 11, Article No. 906. https://doi.org/10.3390/nu11040906 |
[25] |
Hong, I.P., Choi, Y.S., Woo, S.O., et al. (2011) Effect of Cordyceps militaris on Testosterone Production in Sprague-Dawley Rats. Inter-national Journal of Industrial Entomology, 23, 143-146. https://doi.org/10.7852/ijie.2011.23.1.143 |
[26] |
张阳海, 李永, 曹迪, 等. 睾酮对动物生殖和生长发育影响的研究进展[J]. 家畜生态学报, 2018, 39(1): 1-7. |
[27] |
Saez, J.M. (1994) Leydig Cells: Endocrine, Paracrine, and Auto-crine Regulation. Endocrine Reviews, 15, 574-626. https://doi.org/10.1210/edrv-15-5-574 |
[28] |
刘建中, 郭海彬, 邓春华, 等. 大鼠睾丸Leydig细胞的培养和鉴定[J]. 中华男科学杂志, 2006, 12(1): 14-17. |
[29] |
Nguyen, T.V., Chumnanpuen, P., Parunyakul, K., et al. (2021) A Study of the Aphrodisiac Properties of Cordyceps militaris in Streptozotocin-Induced Diabetic Male Rats. Veterinary World, 14, 537-544. https://doi.org/10.14202/vetworld.2021.537-544 |
[30] |
Oyola, M.G. and Handa, R.J. (2017) Hypothalam-ic-Pituitary-Adrenal and Hypothalamic-Pituitary-Gonadal Axes: Sex Differences in Regulation of Stress Responsivity. Stress, 20, 476-494. https://doi.org/10.1080/10253890.2017.1369523 |
[31] |
Richards, J.S. (2001) New Signaling Pathways for Hormones and Cyclic Adenosine 3’,5’-Monophosphate Action in Endocrine Cells. Molecular Endocrinol-ogy, 15, 209-218. |
[32] |
Stocco, D.M. and Clark, B.J. (1996) Regulation of the Acute Production of Steroids in Steroidogenic Cells. Endocrine Reviews, 17, 221-244. https://doi.org/10.1210/edrv-17-3-221 |
[33] |
Strauss, J.F., Kishida, T., Christenson, L.K., et al. (2003) START Domain Proteins and the Intracellular Trafficking of Cholesterol in Steroidogenic Cells. Molecular and Cellular Endocrinology, 202, 59-65. https://doi.org/10.1016/S0303-7207(03)00063-7 |
[34] |
Stocco, D.M. (2001) Tracking the Role of a StAR in the Sky of the New Millennium. Molecular Endocrinology, 15, 1245-1254. https://doi.org/10.1210/mend.15.8.0697 |
[35] |
Zirkin, B.R. and Papadopoulos, V. (2018) Leydig Cells: Formation, Function, and Regulation. Biology of Reproduction, 99, 101-111. https://doi.org/10.1093/biolre/ioy059 |
[36] |
朱清玉, 郭乐薇, 刘红羽, 等. 睾丸间质细胞睾酮合成机制的研究进展[J]. 中国畜牧杂志, 2021, 57(5): 28-33. |
[37] |
Londos, C., Cooper, D. and Wolff, J. (1980) Subclasses of External Adenosine Receptors. Proceedings of the National Academy of Sciences of the United States of America, 77, 2551-2554. https://doi.org/10.1073/pnas.77.5.2551 |
[38] |
Jacobson, K.A. and Gao, Z.G. (2006) Adenosine Receptors as Thera-peutic Targets. Nature Reviews Drug Discovery, 5, 247-264. https://doi.org/10.1038/nrd1983 |
[39] |
He, M.T., Lee, A.Y., Cho, E.J., et al. (2019) Protective Effect of Cordyceps Militaris against Hydrogen Peroxide-Induced Oxidative Stress in Vitro. Nutrition Research and Practice, 13, 279-285. https://doi.org/10.4162/nrp.2019.13.4.279 |
[40] |
Ryan, M.J., Dudash, H.J., Docherty, M., et al. (2008) Ag-ing-Dependent Regulation of Antioxidant Enzymes and Redox Status in Chronically Loaded Rat Dorsiflexor Muscles. Journals of Gerontology, 63, 1015-1026. https://doi.org/10.1093/gerona/63.10.1015 |
[41] |
Koeberle, A., Shindou, H., Harayama, T., et al. (2012) Polyun-saturated fatty acids are incorporated into maturating male mouse germ cells by lysophosphatidic acid acyltransferase 3. The FASEB Journal, 26, 169-180. https://doi.org/10.1096/fj.11-184879 |
[42] |
Asadi, N., Bahmani, M., Kheradmand, A., et al. (2017) The Impact of Oxidative Stress on Testicular Function and the Role of Antioxidant in Improving It: A Review. Journal of Clinical and Diagnostic Research, 11, IE01-IE05. https://doi.org/10.7860/JCDR/2017/23927.9886 |
[43] |
Suresh, S., Prithiviraj, E., Lakshmi, N.V., et al. (2013) Effect of Mucuna pruriens (Linn.) on Mitochondrial Dysfunction and DNA Damage in Epididymal Sperm of Streptozoto-cin-Induced Diabetic Rat. Journal of Ethnopharmacology, 145, 32-41. https://doi.org/10.1016/j.jep.2012.10.030 |
[44] |
孟雪莲, 陈长兰, 孔维娟, 等. 虫草素抑制脂多糖诱导的小胶质细胞活化及神经保护作用[J]. 食品科学, 2014, 35(19): 224-230. |
[45] |
Han, F., Dou, M., Wang, Y.X., et al. (2020) Cordycepin Protects Renal Ischemia/Reperfusion Injury through Regulating Inflammation, Apoptosis, and Oxidative Stress. Acta Biochimica et Biophysica Sinica, 52, 125-132. https://doi.org/10.1093/abbs/gmz145 |
[46] |
Ramesh, T., Yoo, S.K., Kim, S.W., et al. (2012) Cordycepin (3′-Deoxyadenosine) Attenuates Age-Related Oxidative Stress and Ameliorates Antioxidant Capacity in Rats. Experi-mental Gerontology, 47, 979-987. https://doi.org/10.1016/j.exger.2012.09.003 |
[47] |
Iuchi, Y., Okada, F., Tsunoda, S., et al. (2009) Peroxiredoxin 4 Knockout Results in Elevated Spermatogenic Cell Death Via Oxidative Stress. Biochemical Journal, 419, 149-158. https://doi.org/10.1042/BJ20081526 |
[48] |
Rao, A.V. and Shaha, C. (2000) Role of Glutathione S-Transferases in Oxidative Stress-Induced Male Germ Cell Apoptosis. Free Radical Biology & Medicine, 29, 1015-1027. https://doi.org/10.1016/S0891-5849(00)00408-1 |
[49] |
Hemachand, T., Gopalakrishnan, B., Salunke, D.M., et al. (2002) Sperm Plasma-Membrane-Associated Glutathione S-Transferases as Gamete Recognition Molecules. Journal of Cell Science, 115, 2053-2065. https://doi.org/10.1242/jcs.115.10.2053 |
[50] |
Ursini, F., Kiess, M., Maiorino, M., et al. (1999) Dual Function of the Selenoprotein PHGPx during Sperm Maturation. Science, 285, 1393-1396. https://doi.org/10.1126/science.285.5432.1393 |
[51] |
Muralidhara, B.S. (2007) Occurrence of Oxidative Impair-ments Response of Antioxidant Defences and Associated Biochemical Perturbations in Male Reproductive Milieu in the Streptozotocin-Diabetic Rat. International Journal of Andrology, 30, 508-518. https://doi.org/10.1111/j.1365-2605.2007.00748.x |
[52] |
Aguirre-Arias, M.V., Velarde, V. and Moreno, R.D. (2017) Effects of Ascorbic Acid on Spermatogenesis and Sperm Parameters in Diabetic Rats. Cell and Tissue Research, 370, 305-317. https://doi.org/10.1007/s00441-017-2660-6 |
[53] |
Karimi, J., Goodarzi, M.T., Tavilani, H., et al. (2011) Relationship between Advanced Glycation End Products and Increased Lipid Peroxidation in Semen of Diabetic Men. Diabetes Research and Clinical Practice, 91, 61-66. https://doi.org/10.1016/j.diabres.2010.09.024 |
[54] |
Muralidhara, B.S. (2007) Early Oxidative Stress in Testis and Epididymal Sperm in Streptozotocin-Induced Diabetic Mice: Its Progression and Genotoxic Consequences. Reproductive Toxicology, 23, 578-587. https://doi.org/10.1016/j.reprotox.2007.02.001 |