[1] |
Sundararajan, V., Bohensky, M.A., Moore, G., Brand, C.A., Lethborg, C., Gold, M., et al. (2014) Mapping the Patterns of Care, the Receipt of Palliative Care and the Site of Death for Patients with Malignant Glioma. Journal of Neuro-Oncology, 116, 119-126. https://doi.org/10.1007/s11060-013-1263-7 |
[2] |
Claus, E.B., Walsh, K.M., Wiencke, J.K., Molinaro, A.M., Wiemels, J.L., Schildkraut, J.M., et al. (2015) Survival and Low-Grade Glioma: The Emergence of Genetic Information. Neurosurgical Focus, 38, Article No. E6. https://doi.org/10.3171/2014.10.FOCUS12367 |
[3] |
Zheng, H., Li, J., Shen, D., Yang, X., Zhao, S., Wu, Y., et al. (2015) BTG1 Expression Correlates with Pathogenesis, Aggressive Behaviors and Prognosis of Gastric Cancer: A Potential Target for Gene Therapy. Oncotarget, 6, 19685-19705. https://doi.org/10.18632/oncotarget.4081 |
[4] |
薛良军, 冯艳, 童文侠, 陈意红. 恶性胶质瘤术后辅助放疗同步替莫唑胺的临床观察[J]. 现代仪器与医疗, 2015, 21(4): 22-24. |
[5] |
Park, C.K., Lee, S.H., Kim, T.M., Choi, S.H., Park, S.-H., Heo, D.S., et al. (2013) The Value of Temozolomide in Combination with Radiotherapy during Standard Treatment for Newly Diagnosed Glioblastoma. Journal of Neuro-Oncology, 112, 277-283. https://doi.org/10.1007/s11060-013-1060-3 |
[6] |
van Nood, E., Vrieze, A., Nieuwdorp, M., Fuentes, S., Zoetendal, E.G., de Vos, W.M., et al. (2013) Duodenal Infusion of Donor Feces for Recurrent Clostridium difficile. New England Journal of Medicine, 368, 407-415. https://doi.org/10.1056/NEJMoa1205037 |
[7] |
Guarino, A., Wudy, A., Basile, F., Ruberto, E. and Buccigrossi, V. (2012) Retraction: Composition and Roles of Intestinal Microbiota in Children. The Journal of Maternal-Fetal & Neonatal Medicine, 25, 63-66. https://doi.org/10.3109/14767058.2012.663231 |
[8] |
Compare, D., Coccoli, P., Rocco, A., Nardone, O.M., De Maria, S., Cartenì, M., et al. (2012) Gut-Liver Axis: The Impact of Gut Microbiota on Non Alcholic Fatty Liver Disease. Nutrition, Metabolism and Cardiovascular Diseases, 22, 471-476. https://doi.org/10.1016/j.numecd.2012.02.007 |
[9] |
Hooper, L.V. and Gordon, J.I. (2001) Commensal Host-Bacterial Relationships in the Gut. Science, 292, 1115-1118. https://doi.org/10.1126/science.1058709 |
[10] |
Lynch, S.V. and Pedersen, O. (2016) The Human Intestinal Microbiome in Health and Disease. New England Journal of Medicine, 375, 2369-2379. https://doi.org/10.1056/NEJMra1600266 |
[11] |
Zhang, C., Zhang, M., Wang, S., Han, R., Cao, Y., Hua, W., et al. (2010) Interactions between Gut Microbiota, Host Genetics and Diet Relevant to Development of Metabolic Syndromes in Mice. The ISME Journal, 4, 232-241. https://doi.org/10.1038/ismej.2009.112 |
[12] |
Maynard, C.L., Elson, C.O., Hatton, R.D. and Weaver, C.T. (2012) Reciprocal Interactions of the Intestinal Microbiota and Immune System. Nature, 489, 231-241. https://doi.org/10.1038/nature11551 |
[13] |
Lamouse-Smith, E.S., Tzeng, A. and Starnbach, M.N. (2011) The Intestinal Flora Is Required to Support Antibody Responses to Systemic Immunization in Infant and Germ Free Mice. PLoS ONE, 6, Article ID: e27662. https://doi.org/10.1371/journal.pone.0027662 |
[14] |
Brandtzaeg, P. (2010) Function of Mucosa-Associated Lymphoid Tissue in Antibody Formation. Immunological Investigations, 39, 303-355. https://doi.org/10.3109/08820131003680369 |
[15] |
Fulde, M. and Hornef, M.W. (2014) Maturation of the Enteric Mucosal Innate Immune System during the Postnatal Period. Immunological Reviews, 260, 21-34. https://doi.org/10.1111/imr.12190 |
[16] |
高琰宇, 毕文静, 吴新颜, 等. 细菌耐药影响肠道菌群及机体免疫表达[J]. 生物工程学报, 2018, 34(8): 1259-1269. |
[17] |
Wang, G., Huang, S., Wang, Y., Cai, S., Yu, H., Liu, H., et al. (2019) Bridging Intestinal Immunity and Gut Microbiota by Metabolites. Cellular and Molecular Life Sciences, 76, 3917-3937. https://doi.org/10.1007/s00018-019-03190-6 |
[18] |
Westfall, S., Caracci, F., Zhao, D., Wu, Q.-L., Frolinger, T., Simon, J., et al. (2021) Microbiota Metabolites Modulate the T Helper 17 to Regulatory T Cell (Th17/Treg) Imbalance Promoting Resilience to Stress-Induced Anxiety- and Depressive-Like Behaviors. Brain, Behavior, and Immunity, 91, 350-368. https://doi.org/10.1016/j.bbi.2020.10.013 |
[19] |
Noguera, R., Burgos-Panadero, R., Gamero-Sandemetrio, E., de la Cruz-Merino, L. and Álvaro Naranjo, T. (2019) An Integral View of Cancer (II). Fields of Investigation and Emerging Biomarkers. Revista Española de Patología, 52, 222-233. https://doi.org/10.1016/j.patol.2019.04.005 |
[20] |
Pradere, J.P., Dapito, D.H. and Schwabe, R.F. (2014) The Yin and Yang of Toll-Like Receptors in Cancer. Oncogene, 33, 3485-3495. https://doi.org/10.1038/onc.2013.302 |
[21] |
Wallace, B.D., Roberts, A.B., Pollet, R.M., Ingle, J.D., Biernat, K.A., Pellock, S.J., et al. (2015) Structure and Inhibition of Microbiome Beta-Glucuronidases Essential to the Alleviation of Cancer Drug Toxicity. Chemical Biology, 22, 1238-1249. https://doi.org/10.1016/j.chembiol.2015.08.005 |
[22] |
Gopalakrishnan, V., Spencer, C.N., Nezi, L., Reuben, A., Andrews, M.C., Karpinets, T.V. et al. (2018) Gut Microbiome Modulates Response to Anti-PD-1 Immunotherapy in Melanoma Patients. Science, 359, 97-103. https://doi.org/10.1126/science.aan4236 |
[23] |
Matson, V., Fessler, J., Bao, R., Chongsuwat, T., Zha, Y., Alegre, M.-L., et al. (2018) The Commensal Microbiome Is Associated with Anti-PD-1 Efficacy in Metastatic Melanoma Patients. Science, 359, 104-108. https://doi.org/10.1126/science.aao3290 |
[24] |
Routy, B., Le Chatelier, E., Derosa, L., Duong, C.P.M., Alou, M.T., Daillère, R., et al. (2018) Gut Microbiome Influences Efficacy of PD-1-Based Immunotherapy against Epithelial Tumors. Science, 359, 91-97. https://doi.org/10.1126/science.aan3706 |
[25] |
Rajagopala, S.V., Vashee, S., Oldfield, L.M., Suzuki, Y., Craig Venter, J., Telenti, A., et al. (2017) The Human Microbiome and Cancer. Cancer Prevention Research, 10, 226-234. https://doi.org/10.1158/1940-6207.CAPR-16-0249 |
[26] |
Rothhammer, V., Mascanfroni, I.D., Bunse, L., Takenaka, M.C, Kenison, J.E., Mayo, L., et al. (2016) Type I Interferons and Microbial Metabolites of Tryptophan Modulate Astrocyte Activity and Central Nervous System Inflammation via the Aryl Hydrocarbon Receptor. Nature Medicine, 22, 586-597. https://doi.org/10.1038/nm.4106 |
[27] |
Cryan, J.F., O’Riordan, K.J., Cowan, C., Sandhu, K.V., Bastiaanssen, T.F.S., Boehme, M., et al. (2019) The Microbiota-Gut-Brain Axis. Physiological Reviews, 99, 1877-2013. https://doi.org/10.1152/physrev.00018.2018 |
[28] |
Stanley, D., Moore, R.J. and Wong, C. (2018) An Insight into Intestinal Mucosal Microbiota Disruption after Stroke. Scientific Reports, 8, Article No. 568. https://doi.org/10.1038/s41598-017-18904-8 |
[29] |
Li, N., Wang, X., Sun, C., Wu, X., Lu, M., Si, Y., et al. (2019) Change of Intestinal Microbiota in Cerebral Ischemic Stroke Patients. BMC Microbiology, 19, Article No. 191. https://doi.org/10.1186/s12866-019-1552-1 |
[30] |
Jangi, S., Gandhi, R., Cox, L.M., Li, N., von Glehn, F., Yan, R., et al. (2016) Alterations of the Human Gut Microbiome in Multiple Sclerosis. Nature Communications, 7, Article No. 12015. https://doi.org/10.1038/ncomms12015 |
[31] |
Unger, M.M., Spiegel, J., Dillmann, K.U., Grundmann, D., Philippeit, H., Bürmann, J., et al. (2016) Short Chain Fatty Acids and Gut Microbiota Differ between Patients with Parkinson’s Disease and Age-Matched Controls. Parkinsonism & Related Disorders, 32, 66-72. https://doi.org/10.1016/j.parkreldis.2016.08.019 |
[32] |
Blacher, E., Bashiardes, S., Shapiro, H., Rothschild, D., Mor, U., Dori-Bachash, M., et al. (2019) Potential Roles of Gut Microbiome and Metabolites in Modulating ALS in Mice. Nature, 572, 474-480. https://doi.org/10.1038/s41586-019-1443-5 |
[33] |
Spor, A., Koren, O. and Ley, R. (2011) Unravelling the Effects of the Environment and Host Genotype on the Gut Microbiome. Nature Reviews Microbiology, 9, 279-290. https://doi.org/10.1038/nrmicro2540 |
[34] |
Rhee, S.H., Pothoulakis, C. and Mayer, E.A. (2009) Principles and Clinical Implications of the Brain-Gut-Enteric Microbiota Axis. Nature Reviews Gastroenterology & Hepatology, 6, 306-314. https://doi.org/10.1038/nrgastro.2009.35 |
[35] |
贺欣, 路瑶, 张目涵, 冯百岁. 神经调节在炎症性肠病中的作用和治疗进展[J]. 医学综述, 2017, 23(16): 3126-3131, 3136. https://doi.org/10.3969/j.issn.1006-2084.2017.16.002 |
[36] |
田祖宏, 聂勇战. 肠道微生物与脑-肠轴交互作用的研究进展[J]. 传染病信息, 2016, 29(5): 302-307. |
[37] |
Berer, K., Mues, M., Koutrolos, M., Al Rasbi, Z., Boziki, M., Johner, C., et al. (2011) Commensal Microbiota and Myelin Autoantigen Cooperate to Trigger Autoimmune Demyelination. Nature, 479, 538-541. https://doi.org/10.1038/nature10554 |
[38] |
Berer, K., Gerdes, L.A., Cekanaviciute, E., Jia, X., Xiao, L., Xia, Z., et al. (2017) Gut Microbiota from Multiple Sclerosis Patients Enables Spontaneous Autoimmune Encephalomyelitis in Mice. Proceedings of the National Academy of Sciences of the United States of America, 114, 10719-10724. https://doi.org/10.1073/pnas.1711233114 |
[39] |
Cekanaviciute, E., Yoo, B.B., Runia, T.F., Debelius, J.W., Singh, S., Nelson, C.A., et al. (2017) Gut Bacteria from Multiple Sclerosis Patients Modulate Human T Cells and exacerbate Symptoms in Mouse Models. Proceedings of the National Academy of Sciences of the United States of America, 114, 10713-10718. https://doi.org/10.1073/pnas.1711235114 |
[40] |
Quintana, F.J. and Prinz, M. (2017) A Gut Feeling about Multiple Sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 114, 10528-10529. https://doi.org/10.1073/pnas.1714260114 |
[41] |
Rojas, O.L., Probstel, A.K., Porfilio, E.A., Wang, A.A., Charabati, M., Sun, T., et al. (2019) Recirculating Intestinal IgA-Producing Cells Regulate Neuroinflammation via IL-10. Cell, 176, 610-624. https://doi.org/10.1016/j.cell.2018.11.035 |
[42] |
Braniste, V., Al-Asmakh, M., Kowal, C., Anuar, F., Abbaspour, A., Tóth, M., et al. (2014) The Gut Microbiota Influences Blood-Brain Barrier Permeability in Mice. Science Translational Medicine, 6, Article No. 263ra158. https://doi.org/10.1126/scitranslmed.3009759 |
[43] |
Ben-Shaanan, T.L., Schiller, M., Azulay-Debby, H., Korin, B., Boshnak, N., Koren, T., et al. (2018) Modulation of Anti-Tumor Immunity by the Brain’s Reward System. Nature Communications, 9, Article No. 2723. https://doi.org/10.1038/s41467-018-05283-5 |
[44] |
Engelhardt, B., Vajkoczy, P. and Weller, R.O. (2017) The Movers and Shapers in Immune Privilege of the CNS. Nature Immunology, 18, 123-131. https://doi.org/10.1038/ni.3666 |
[45] |
See, A.P., Parker, J.J. and Waziri, A. (2015) The Role of Regulatory T Cells and Microglia in Glioblastoma-Associated Immunosuppression. Journal of Neuro-Oncology, 123, 405-412. https://doi.org/10.1007/s11060-015-1849-3 |
[46] |
da Fonseca, A.C.C., Matias, D., Garcia, C., Amaral, R., Geraldo, L.H., Freitas, C., et al. (2014) The Impact of Microglial Activation on Blood-Brain Barrier in Brain Diseases. Frontiers in Cellular Neuroscience, 8, Article No. 362. https://doi.org/10.3389/fncel.2014.00362 |
[47] |
Aguzzi, A., Barres, B.A. and Bennett, M.L. (2013) Microglia: Scapegoat, Saboteur, or Something Else? Science, 339, 156-161. https://doi.org/10.1126/science.1227901 |
[48] |
Yang, Y.M., Shang, D.S., Zhao, W.D., Fang, W.-G. and Chen, Y.-H. (2013) Microglial TNF-Alpha-Dependent Elevation of MHC Class I Expression on Brain Endothelium Induced by Amyloid-Beta Promotes T Cell Transendothelial Migration. Neurochemical Research, 38, 2295-2304. https://doi.org/10.1007/s11064-013-1138-5 |
[49] |
Xie, Q., Mittal, S. and Berens, M.E. (2014) Targeting Adaptive Glioblastoma: An Overview of Proliferation and Invasion. Neuro-Oncology, 16, 1575-1584. https://doi.org/10.1093/neuonc/nou147 |
[50] |
Okada, M., Saio, M., Kito, Y., Ohe, N., Yano, H., Yoshimura, S., et al. (2009) Tumor-Associated Macrophage/Microglia Infiltration in Human Gliomas Is Correlated with MCP-3, but Not MCP-1. International Journal of Oncology, 34, 1621-1627. https://doi.org/10.3892/ijo_00000292 |
[51] |
Lion, E., Smits, E.L., Berneman, Z.N. and Van Tendeloo, V.F. (2012) NK Cells: Key to Success of DC-Based Cancer Vaccines? Oncologist, 17, 1256-1270. https://doi.org/10.1634/theoncologist.2011-0122 |
[52] |
Garofalo, S., D’Alessandro, G., Chece, G., Brau, F., Maggi, L., Rosa, A., et al. (2015) Enriched Environment Reduces Glioma Growth through Immune and Non-Immune Mechanisms in Mice. Nature Communications, 6, Article No. 6623. https://doi.org/10.1038/ncomms7623 |
[53] |
Rodriguez-Arellano, J.J., Parpura, V., Zorec, R. and Verkhratsky, A. (2016) Astrocytes in Physiological Aging and Alzheimer’s Disease. Neuroscience, 323, 170-182. https://doi.org/10.1016/j.neuroscience.2015.01.007 |
[54] |
Rothhammer, V., Borucki, D.M., Tjon, E.C., Takenaka, M.C., Chao, C.-C., Ardura-Fabregat, A., et al. (2018) Microglial Control of Astrocytes in Response to Microbial Metabolites. Nature, 557, 724-728. https://doi.org/10.1038/s41586-018-0119-x |
[55] |
Gutierrez-Vazquez, C. and Quintana, F.J. (2018) Regulation of the Immune Response by the Aryl Hydrocarbon Receptor. Immunity, 48, 19-33. https://doi.org/10.1016/j.immuni.2017.12.012 |
[56] |
Rothhammer, V. and Quintana, F.J. (2019) The Aryl Hydrocarbon Receptor: An Environmental Sensor Integrating Immune Responses in Health and Disease. Nature Reviews Immunology, 19, 184-197. https://doi.org/10.1038/s41577-019-0125-8 |
[57] |
Opitz, C.A., Litzenburger, U.M., Sahm, F., Ott, M., Tritschler, I., Trump, S., et al. (2011) An Endogenous Tumour-Promoting Ligand of the Human Aryl Hydrocarbon Receptor. Nature, 478, 197-203. https://doi.org/10.1038/nature10491 |
[58] |
Platten, M., Nollen, E., Rohrig, U.F., Fallarino, F. and Opitz, C.A. (2019) Tryptophan Metabolism as a Common Therapeutic Target in Cancer, Neurodegeneration and Beyond. Nature Reviews Drug Discovery, 18, 379-401. https://doi.org/10.1038/s41573-019-0016-5 |
[59] |
Gramatzki, D., Pantazis, G., Schittenhelm, J., Tabatabai, G., Köhle, C., Wick, W., et al. (2009) Aryl Hydrocarbon Receptor Inhibition Downregulates the TGF-Beta/Smad Pathway in Human Glioblastoma Cells. Oncogene, 28, 2593-2605. https://doi.org/10.1038/onc.2009.104 |
[60] |
Takenaka, M.C., Gabriely, G., Rothhammer, V., Mascanfroni, I.D., Wheeler, M.A., Chao, C.-C., et al. (2019) Control of Tumor-Associated Macrophages and T Cells in Glioblastoma via AHR and CD39. Nature Neuroscience, 22, 729-740. https://doi.org/10.1038/s41593-019-0370-y |
[61] |
Patrizz, A., Dono, A., Zorofchian, S., Hines, G., Takayasu, T., Husein, N., et al. (2020) Glioma and Temozolomide Induced Alterations in Gut Microbiome. Scientific Reports, 10, Article No. 21002. https://doi.org/10.1038/s41598-020-77919-w |
[62] |
D’Alessandro, G., Antonangeli, F., Marrocco, F., Porzia, A., Lauro, C., Santoni, A., et al. (2020) Gut Microbiota Alterations Affect Glioma Growth and Innate Immune Cells Involved in Tumor Immunosurveillance in Mice. European Journal of Immunology, 50, 705-711. https://doi.org/10.1002/eji.201948354 |