[1] |
Pickett, S.T.A. and White, P.S. (1985) The Ecology of Natural Disturbance and Patch Dynamics. Academic Press Inc., Orlando. |
[2] |
Ye, L.Q. (2000) The Relationship between Disturbance and Biodiversity. Journal of Guizhou University (Natural Science), 17, 129-134. |
[3] |
毛志宏, 朱教君. 干扰对植物群落物种组成及多样性的影响[J]. 生态学报, 2006, 26(8): 2695-2701. |
[4] |
朱教君, 刘足根. 森林干扰生态研究[J]. 应用生态学报, 2004, 15(10): 1703-1710. |
[5] |
Wright, S.F. and Upadhyaya, A. (1996) Extraction of an Abundant and Unusual Protein from Soil and Comparison with Hyphal Protein of Arbuscular Mycorrhizal Fungi. Soil Science, 161, 575-586. https://doi.org/10.1097/00010694-199609000-00003 |
[6] |
Cross, T.A. (2006) Global Distributions of Arbuscular Mycorrhizal Fungi. Ecosystems, 9, 305-316. https://doi.org/10.1007/s10021-005-0110-x |
[7] |
Glomalin, C.D. (2004) Hiding Place for a Third of the World’s Stored Soil Carbon. Australia Farm, 14, 64-66. |
[8] |
Gadkar, V., Driver, J.D. and Rillig, M.C. (2006) A Novel in Vitro Cultivation System to Produce and Isolate Soluble Factors Released from Hyphae of Arbuscular Mycorrhizal Fungi. Biotechnology Letters, 28, 1071-1076. https://doi.org/10.1007/s10529-006-9055-1 |
[9] |
Lovelock, C.E., Wright, S.F., Clark, D.A., et al. (2004) Soil Stocks of Glomalin Produced by Arbuscular Mycorrhizal Fungi across a Tropical Rain Forest Landscape. Journal of Ecology, 92, 278-287. https://doi.org/10.1111/j.0022-0477.2004.00855.x |
[10] |
Rillig, M.C., HernaNdez, G.Y. and Newton, P.C.D. (2000) Arbuscular Mycorrhizae Respond to Elevated Atmospheric CO2 after Long-Term Exposure: Evidence from a CO2 Spring in New Zealand Supports the Resource Balance Model. Ecology Letters, 3, 475-478. https://doi.org/10.1046/j.1461-0248.2000.00178.x |
[11] |
Rillig, M.C., Caldwell, B.A., Wösten, H.A.B. and Sollins, P. (2007) Role of Proteins in Soil Carbon and Nitrogen Storage: Controls on Persistence. Biogeochemistry, 85, 25-44. https://doi.org/10.1007/s10533-007-9102-6 |
[12] |
Wang, W.J., Zhong, Z.L., Wang, Q., Wang, H.M., Fu, Y.J. and He, X.Y. (2017) Glomalin Contributed More to Carbon, Nutrients in Deeper Soils, and Differently Associated with Climates and Soil Properties in Vertical Profiles. Scientific Reports, 7, Article No. 13003. https://doi.org/10.1038/s41598-017-12731-7 |
[13] |
权常欣, 马玲玲, 林钊凯, 唐旭利. 广东省森林球囊霉素相关土壤蛋白含量及影响因素[J]. 生态环境学报, 2020, 29(2): 240-249. |
[14] |
Wright, S.F., Starr, J.L. and Paltineanu, I.C. (1999) Changes in Aggregate Stability and Concentration of Glomalin during Tillage Management Transition. Soil Science Society of America Journal, 63, 1825-1829. https://doi.org/10.2136/sssaj1999.6361825x |
[15] |
杨显志, 邵华, 周成, 宣群, 杨春燕, 张玲琪. 丛枝菌根研究及应用[J]. 云南农业科技, 2011(4): 38-41. |
[16] |
袁维风, 徐德聪. 丛枝菌根在植被恢复中的应用研究进展[J]. 广东农业科学, 2011, 38(7): 161-163. |
[17] |
Smith, S.E. and Read, D.J. (2008) Mycorrhizal Symbiosis. Academic Press, Cambridge, 13-15. https://doi.org/10.1016/B978-012370526-6.50003-9 |
[18] |
Wilson, G.W.T., Rice, C.W., Rillig, M.C., Springer, A. and Hartnett, D.C. (2009) Soil Aggregation and Carbon Sequestration Are Tightly Correlated with the Abundance of Arbuscular Mycorrhizal Fungi: Results from Long-Term Field Experiments. Ecology Letters, 12, 452-461. https://doi.org/10.1111/j.1461-0248.2009.01303.x |
[19] |
刘润进, 李晓林. 丛枝菌根及其应用[M]. 北京: 科学出版社, 2000. |
[20] |
Rillig, M.C. and Mummey, D.L. (2006) Mycorrhizas and Soil Structure. New Phytologist, 171, 41-53. https://doi.org/10.1111/j.1469-8137.2006.01750.x |
[21] |
Johnson, D., Leake, J., Ostle, N., et al. (2010) In Situ 13CO2 Pulse-Labelling of Upland Grassland Demonstrates a Rapid Pathway of Carbon Flux from Arbuscular Mycorrhizal Mycelia to the Soil. New Phytologist, 153, 327-334. https://doi.org/10.1046/j.0028-646X.2001.00316.x |
[22] |
Wright, S.F. and Nichols, K.A. (2002) Glomalin: Hiding Place for a Third of the World’s Stored Soil Carbon. Agricultural Research, 50, 4-7. |
[23] |
Treseder, K.K. and Turner, K.M. (2007) Glomalin in Ecosystems. Soil Science Society of America Journal, 71, 1257-1266. https://doi.org/10.2136/sssaj2006.0377 |
[24] |
Wright, S.F. and Upadhyaya, A. (1998) A Survey of Soils for Ag-gregate Stability and Glomalin, a Glycoprotein Produced by Hyphae of Arbuscular Mycorrhizal Fungi. Plant Soil, 198, 97-107. |
[25] |
Rillig, M.C., Wright, S.F., Nichols, K.A., Schmidt, W.F. and Torn, M.S. (2001) Large Contribution of Arbuscular Mycorrhizal Fungi to Soil Carbon Pools in Tropical Forest Soils. Plant and Soil, 233, 167-177. https://doi.org/10.1023/A:1010364221169 |
[26] |
Wright, S.F., Upadhyaya, A. and Buyer, J.S. (1998) Comparison of N-Linked Oligosaccharides of Glomalin from Arbuscular Mycorrhizal Fungi and Soils by Capillary Electrophoresis. Soil Biology & Biochemistry, 30, 1853-1857. https://doi.org/10.1016/S0038-0717(98)00047-9 |
[27] |
Wang, Q., Wang, W., He, X., Zhang, W., Song, K. and Han, S. (2015) Role and Variation of the Amount and Composition of Glomalin in Soil Properties in Farmland and Adjacent Plantations with Reference to a Primary Forest in North-Eastern China. PLoS ONE, 10, e0139623. https://doi.org/10.1371/journal.pone.0139623 |
[28] |
Rillig, M.C., Ramsey, P.W., Morris, S. and Paul, E.A. (2003) Glomalin, an Arbuscular-Mycorrhizal Fungal Soil Protein, Responds to Land-Use Change. Plant Soil, 253, 293-299. https://doi.org/10.1023/A:1024807820579 |
[29] |
Rillig, M.C. (2004) Arbuscular Mycorrhizae, Glomalin, and Soil Aggregation. Canadian Journal of Soil Science, 84, 355-363. https://doi.org/10.4141/S04-003 |
[30] |
Rosier, C.L., Hoye, A.T. and Rillig, M.C. (2006) Glomalin-Related Soil Protein: Assessment of Current Detection and Quantification Tools. Soil Biology and Biochemistry, 38, 2205-2211. https://doi.org/10.1016/j.soilbio.2006.01.021 |
[31] |
Rillig, M.C., Maestre, F.T. and Lamit, L.J. (2003) Microsite Differences in Fungal Hyphal Length, Glomalin, and Soil Aggregate Stability in Semiarid Mediterranean Steppes. Soil Biology and Biochemistry, 35, 1257-1260. https://doi.org/10.1016/S0038-0717(03)00185-8 |
[32] |
Staddon, P.L., Jakobsen, I. and Blum, H. (2010) Nitrogen Input Mediates the Effect of Free-Air CO2 Enrichment on Mycorrhizal Fungal Abundance. Global Change Biology, 10, 1678-1688. https://doi.org/10.1111/j.1365-2486.2004.00853.x |
[33] |
Wu, Q.S., Cao, M.Q., Zou, Y.N., et al. (2014) Direct and Indirect Effects of Glomalin, Mycorrhizal Hyphae, and Roots on Aggregate Stability in Rhizosphere of Trifoliate Orange. Scientific Reports, 4, Article No. 5823. https://doi.org/10.1038/srep05823 |
[34] |
Nichols, K.A. (2008) Indirect Contributions of AM Fungi and Soil Aggregation to Plant Growth and Protection. In: Siddiqui, Z.A., Akhtar, S. and Futai, K., Eds., Mycorrhizae: Sustainable Agriculture and Forestry, Springer, Dordrecht, 177-194. https://doi.org/10.1007/978-1-4020-8770-7_7 |
[35] |
Hoorman, J.J., de Moraes, J.C. and Reeder, R. (2009) The Biology of Soil Compaction. Ohio State University Extension, Columbus. |
[36] |
Chen, Z., Zhou, X., Geng, S., Miao, Y., Cao, Y. and Chen, Z. (2019) Interactive Effect of Nitrogen Addition and Through Fall Reduction Decreases Soil Aggregate Stability through Reducing Biological Binding Agents. Forest Ecology and Management, 445, 13-19. https://doi.org/10.1016/j.foreco.2019.04.057 |
[37] |
Staunton, S., Saby, N.P.A., Arrouays, D. and Quiquampoix, H. (2020) Can Soil Properties and Land Use Explain Glomalin-Related Soil Protein (GRSP) Accumulation? A Nationwide Survey in France. Catena, 193, Article ID: 104620. https://doi.org/10.1016/j.catena.2020.104620 |
[38] |
Han, C. (2012) 2011 China Agricultural Development Report. Ministry of Agriculture, Beijing. |
[39] |
Vodnik, D., Grčman, H., Maček, I., Van Elteren, J.T. and Kovačevič, M. (2008) The Contribution of Glomalin-Related Soil Protein to Pb and Zn Sequestration in Polluted Soil. Science of the Total Environment, 392, 130-136. https://doi.org/10.1016/j.scitotenv.2007.11.016 |
[40] |
Wang, Q., Wu, Y., Wang, W.J., Zhong, Z.L., Pei, Z.X., Ren, J., Wang, H.M. and Zu, Y.G. (2014) Spatial Variations in Concentration, Compositions of Glomalin Related Soil Protein in Poplar Plantations in North-Eastern China, and Possible Relations with Soil Physicochemical Properties. The Scientific World Journal, 2014, Article ID: 160403. https://doi.org/10.1155/2014/160403 |
[41] |
Wang, Q., Wang, W.J., Zhong, Z.L., Wang, H.M. and Fu, Y.J. (2020) Variation in Glomalin in Soil Profiles and Its Association with Climatic Conditions, Shelterbelt Characteristics, and Soil Properties in Poplar Shelterbelts of Northeast China. Journal of Forestry Research, 31, 279-290. https://doi.org/10.1007/s11676-019-00909-w |
[42] |
贺海升, 王琼, 裴忠雪, 王慧梅, 王文杰. 落叶松人工林球囊霉素相关土壤蛋白与土壤理化性质空间差异特性[J]. 生态学杂志, 2015, 34(12): 3466-3473. |
[43] |
朱劲伟, 崔启武, 史继德, 王维华, 王大铎. 红松林和采伐迹地的水量平衡分析[J]. 生态学报, 1982(4): 335-344. |
[44] |
Paschke, M.W., McLendon, T. and Redente, E.F. (2000) Nitrogen Availability and Old-Field Succession in a Shortgrass Steppe. Ecosystems, 3, 144-158. https://doi.org/10.1007/s100210000016 |
[45] |
Richter, D.D., Markewitz, D., Trumbore, S.E. and Wells, C.G. (1999) Rapid Accumulation and Turnover of Soil Carbon in a Re-Establishing Forest. Nature, 400, 56-58. https://doi.org/10.1038/21867 |
[46] |
苏永中, 赵哈林. 土壤有机碳储量、影响因素及其环境效应的研究进展[J]. 中国沙漠, 2002, 22(3): 1-5. |
[47] |
Hughes, R.F., Kauffman, J.B. and Cummings, D.L. (2002) Dynamics of Aboveground and Soil Carbon and Nitrogen Stocks and Cycling of Available Nitrogen along a Landuse Gradient in Rondônia, Brazil. Ecosystems, 5, 244-259. https://doi.org/10.1007/s10021-001-0069-1 |
[48] |
Kauffman, J.B., Cummings, D.L. and Ward, D.E. (1998) Fire in the Brazilian Amazon: Biomass, Nutrient Pools, and Losses in Cattle Pastures. Oecologia, 113, 415-427. https://doi.org/10.1007/s004420050394 |
[49] |
Cheng, Y., Li, P., Xu, G., Li, Z., Cheng, S. and Gao, H. (2016) Spatial Distribution of Soil Total Phosphorus in Yingwugou Watershed of the Dan River, China. Catena, 136, 175-181. https://doi.org/10.1016/j.catena.2015.02.015 |
[50] |
Kooijman, A.M., Jongejans, J. and Sevink, J. (2005) Parent Material Effects on Mediterranean Woodland Ecosystems in NE Spain. Catena, 59, 55-68. https://doi.org/10.1016/j.catena.2004.05.004 |
[51] |
Ross, D.J., Tate, K.R., Scott, N.A., et al. (1999) Land-Use Change: Effects on Soil Carbon, Nitrogenand Phosphorus Pools and Fluxes in Three Adjacent Ecosystems. Soil Biology and Biochemistry, 31, 803-813. https://doi.org/10.1016/S0038-0717(98)00180-1 |
[52] |
周剑芬, 管东生. 森林土地利用变化及其对C循环的影响[J]. 生态环境, 2004, 13(4): 674-676. |
[53] |
Kanda, K., Miranda, C.H.B. and Macedo, M.C.M. (2002) Carbon and Nitrogen Mineralization in Soils under Agropastoral Systems in Subtropical Central Brazil. Journal of Plant Nutrition and Soil Science, 48, 179-184. https://doi.org/10.1080/00380768.2002.10409189 |
[54] |
杨红, 徐唱唱, 赛曼, 等. 不同土地利用方式对土壤含水量、pH值及电导率的影响[J]. 浙江农业学报, 2016(11): 1922-1927. |
[55] |
Xiong, Y., Xia, H., Li, Z., et al. (2008) Impacts of Litter and Understory Removal on Soil Properties in a Subtropical Acacia mangium Plantation in China. Plant & Soil, 304, 179-188. https://doi.org/10.1007/s11104-007-9536-6 |
[56] |
Moora, M., Davison, J., Öpik, M., Metsis, M., Saks, U., Jairus, T., V asar, M. and Zobel, M. (2014) Anthropogenic Land Use Shapes the Composition and Phylogenetic Structure of Soil Arbuscular Mycorrhizal Fungal Communities. FEMS Microbiology Ecology, 90, 609-621. https://doi.org/10.1111/1574-6941.12420 |
[57] |
Pärtel, M., Öpik, M., Moora, M., Tedersoo, L., Szava-Kovats, R., Rosendahl, S., Rillig, M.C., Lekberg, Y., Kreft, H., Helgason, T., Eriksson, O., Davison, J., de Bello, F., Caruso, T. and Zobel, M. (2017) Historical Biome Distribution and Recent Human Disturbance Shape the Diversity of Arbuscular Mycorrhizal Fungi. New Phytologist, 216, 227-238. https://doi.org/10.1111/nph.14695 |
[58] |
Tipton, A.G., Middleton, E.L., Spollen, W.G. and Galen, C. (2019) Anthropogenic and Soil Environmental Drivers of Arbuscular Mycorrhizal Community Composition Differ between Grassland Ecosystems. Botany, 97, 85-99. https://doi.org/10.1139/cjb-2018-0072 |
[59] |
Wright, S.F. and Upadhyaya, A. (1999) Quantification of Arbuscular Mycorrhizal Fungi Activity by the Glomalin Concentration on Hyphal Traps. Mycorrhiza, 8, 283-285. https://doi.org/10.1007/s005720050247 |
[60] |
Violi, H.A., Barrientos-Priego, A.F., Wright, S.F., Escamilla-Prado, E., Morton, J.B., Menge, J.A. and Lovatt, C.J. (2007) Disturbance Changes Arbuscular Mycorrhizal Fungal Phenology and Soil Glomalin Concentrations But Not Fungal Spore Composition in Montane Rainforests in Veracruz and Chiapas, Mexico. Forest Ecology and Management, 254, 276-290. https://doi.org/10.1016/j.foreco.2007.08.016 |
[61] |
Spohn, M. and Giani, L. (2010) Water-Stable Aggregates, Glomalin-Related Soil Protein, and Carbohydrates in a Chronosequence of Sandy Hydromorphic Soils. Soil Biology and Biochemistry, 42, 1505-1511. https://doi.org/10.1016/j.soilbio.2010.05.015 |
[62] |
Gispert, M., Emran, M., Pardini, G., Doni, S. and Ceccanti, B. (2013) The Impact of Land Management and Abandonment on Soil Enzymatic Activity, Glomalin Content and Aggregate Stability. Geoderma, 202, 51-61. https://doi.org/10.1016/j.geoderma.2013.03.012 |
[63] |
Helgason, T., Daniell, T.D., Husband, R., Fitter, A.H. and Young, J.P.W. (1998) Plouging Up the Wood Wide Web? Nature, 394, 431. https://doi.org/10.1038/28764 |
[64] |
Oehl, F., Sieverding, E., Ineichen, K., Mader, P., Boller, T. and Wiemken, A. (2003) Impact of Land Used Intensity on the Species Diversity of Arbuscular Mycorhizal Fungi in Agro Ecosystems of Central Europe. Applied and Environmental Microbiology, 69, 2816-2824. https://doi.org/10.1128/AEM.69.5.2816-2824.2003 |
[65] |
Curaqueo, G., Barea, M., Acevedo, J.E., Rubio, R., Cornejo, P. and Borie, F. (2011) Effects of Different Tillage System on Arbuscular Mycorrhizal Fungal Propagules and Physical Properties in a Mediterranean Agroecosystem in Central Chile. Soil & Tillage Research, 113, 11-18. https://doi.org/10.1016/j.still.2011.02.004 |
[66] |
Alguacil, M.M., Lumini, E., Roldan, A., Salinas-Garcia, R.J., Bonfante, P. and Bianciotto, V. (2008) The Impact of Tillage Practices on Arbuscular Mycorhizal Fungal Diversity in Subtropical Crops. Ecological Applications, 18, 527-536. https://doi.org/10.1890/07-0521.1 |
[67] |
Xiao, L., Zhang, Y., Li, P., Xu, G., Shi, P. and Zhang, Y. (2019) Effects of Freeze-Thaw Cycles on Aggregate-Associated Organic Carbon and Glomalin-Related Soil Protein in Natural-Succession Grassland and Chinese Pine Forest on the Loess Plateau. Geoderma, 334, 1-8. https://doi.org/10.1016/j.geoderma.2018.07.043 |
[68] |
Jorge-Araújo, P., Quiquampoix, H., Matumoto-Pintro, P.T. and Staunton, S. (2015) Glomalin-Related Soil Protein in French Temperate Forest Soils: Interference in the Bradford Assay Caused by Co-Extracted Humic Substances. European Journal of Soil Science, 66, 311-319. https://doi.org/10.1111/ejss.12218 |
[69] |
Qiao, L.L., Li, Y.Z., Song, Y.H., Zhai, J.Y., Wu, Y., Chen, W.J., Liu, G.B. and Xue, S. (2019) Effects of Vegetation Restoration on the Distribution of Nutrients, Glomalin-Related Soil Protein, and Enzyme Activity in Soil Aggregates on the Loess Plateau, China. Forests, 10, 796. https://doi.org/10.3390/f10090796 |
[70] |
An, S.-S., Darboux, F. and Cheng, M. (2013) Revegetation as an Efficient Means of Increasing Soil Aggregate Stability on the Loess Plateau (China). Geoderma, 209, 75-85. https://doi.org/10.1016/j.geoderma.2013.05.020 |
[71] |
Zhao, D., Xu, M., Liu, G., Yao, X., Tuo, D., Zhang, R., Xiao, T. and Peng, G. (2017) Quantification of Soil Aggregate Microstructure on Abandoned Cropland during Vegetative Succession Using Synchrotron Radiation-Based Micro-Computed Tomography. Soil & Tillage Research, 165, 239-246. https://doi.org/10.1016/j.still.2016.08.007 |
[72] |
Liu, H.F., Wang, X.K., Liang, C.T., Ai, Z.M., Wu, Y., Xu, H.W., Xue, S. and Liu, G.B. (2020) Glomalin-Related Soil Protein Affects Soil Aggregation and Recovery of Soil Nutrient Following Natural Revegetation on the Loess Plateau. Geoderma, 357, Article ID: 113921. https://doi.org/10.1016/j.geoderma.2019.113921 |
[73] |
Cheng, M., Xiang, Y., Xue, Z., An, S. and Darboux, F. (2015) Soil Aggregation and Intra-Aggregate Carbon Fractions in Relation to Vegetation Succession on the Loess Plateau, China. Catena, 124, 77-84. https://doi.org/10.1016/j.catena.2014.09.006 |