[1] |
Wright, S.F. and Upadhyaya, A. (1996) Extraction of an Abundant and Unusual Protein from Soil and Comparison with Hyphal Protein of Arbuscular Mycorrhizal Fungi. Soil Science, 161, 575-586. https://doi.org/10.1097/00010694-199609000-00003 |
[2] |
Wright, S.F. and Upadhyaya, A. (1998) A Survey of Soils for Aggregate Stability and Glomalin, a Glycoprotein Produced by Hyphae of Arbuscular Mycorrhizal Fungi. Plant and Soil, 198, 97-107. |
[3] |
Rillig, M.C. and Mummey, D.L. (2006) Mycorrhizas and Soil Structure. New Phytologist, 171, 41-53. https://doi.org/10.1111/j.1469-8137.2006.01750.x |
[4] |
Rillig, M.C., Ramsey, P.W., Morris, S. and Paul, E.A. (2003) Glomalin, an Arbuscular-Mycorrhizal Fungal Soil Protein, Responds to Land-Use Change. Plant and Soil, 253, 293-299. |
[5] |
Lovelock, C.E., Wright, S.F., Clark, D.A. and Ruess, R.W. (2004) Soil Stocks of Glomalin Produced by Arbuscular Mycorrhizal Fungi across a Tropical Rain Forest Landscape. Journal of Ecology, 92, 278-287. https://doi.org/10.1111/j.0022-0477.2004.00855.x |
[6] |
Gadkar, V. and Rillig, M.C. (2006) The Arbuscular Mycorrhizal Fungal Protein Glomalin Is a Putative Homolog of Heat Shock Protein 60. FEMS Microbiology Letters, 263, 93-101. https://doi.org/10.1111/j.1574-6968.2006.00412.x |
[7] |
Lambers, H., Raven, J.A., Shaver, G.R. and Smith, S.E. (2008) Plant Nutrient-Acquisition Strategies Change with Soil Age. Trends in Ecology & Evolution, 23, 95-103. https://doi.org/10.1016/j.tree.2007.10.008 |
[8] |
Gianinazzi, S., Gollotte, A., Binet, M.N., et al. (2010) Agroecology: The Key Role of Arbuscular Mycorrhizas in Ecosystem Services. Mycorrhiza, 20, 519-530. https://doi.org/10.1007/s00572-010-0333-3 |
[9] |
Fokom, R., Adamou, S., Teugwa, M.C., Begoude Boyogueno, A.D., Nana, W.L., Ngonkeu, M.E.L., Tchameni, N.S., Nwaga, D., Tsala Ndzomo, G. and Amvam Zollo, P.H. (2012) Glomalin Related Soil Protein, Carbon, Nitrogen and Soil Aggregate Stability as Affected by Land Use Variation in the Humid Forest Zone of South Cameroon. Soil & Tillage Research, 120, 69-75. https://doi.org/10.1016/j.still.2011.11.004 |
[10] |
Alagöz, Z. and Yilmaz, E. (2009) Effects of Different Sources of Organic Matter on Soil Aggregate Formation and Stability: A Laboratory Study on a Lithic Rhodoxeralf from Turkey. Soil and Tillage Research, 103, 419-424. https://doi.org/10.1016/j.still.2008.12.006 |
[11] |
Rillig, M.C., Wright, S.F., Nichols, K.A., Schmidt, W.F. and Torn, M.S. (2001) Large Contribution of Arbuscular Mycorrhizal Fungi to Soil Carbon Pools in Tropical Forest Soils. Plant and Soil, 233, 167-177. https://doi.org/10.1023/A:1010364221169 |
[12] |
Qiao, L.L., Li, Y.Z., Song, Y.H., Zhai, J.Y., Wu, Y., Chen, W.J., Liu, G.B. and Xue, S. (2019) Effects of Vegetation Restoration on the Distribution of Nutrients, Glomalin-Related Soil Protein, and Enzyme Activity in Soil Aggregates on the Loess Plateau, China. Forests, 10, 796. https://doi.org/10.3390/f10090796 |
[13] |
Koziol, L. and Bever, J.D. (2017) The Missing Link in Grassland Resto-ration: Arbuscular Mycorrhizal Fungi Inoculation Increases Plant Diversity and Accelerates Succession. Journal of Applied Ecology, 54, 1301-1309. https://doi.org/10.1111/1365-2664.12843 |
[14] |
Matevž, L., Katarina, H., Tomislav, R. and Marjana, R. (2013) Distribution and Diversity of Arbuscular Mycorrhizal Fungi in Grapevines from Production Vineyards along the Eastern Adriatic Coast. Mycorrhiza, 23, 201-209. https://doi.org/10.1007/s00572-012-0463-x |
[15] |
钟思远, 张静, 褚国伟, 夏艳菊, 唐旭利. 南亚热带森林丛枝菌根真菌与土壤结构的关系[J]. 生态科学, 2018, 37(5): 16-24. |
[16] |
阙弘, 葛阳洋, 康福星, 凌婉婷. 南京典型利用方式土壤中球囊霉素含量及剖面分布特征[J]. 土壤, 2015, 47(4): 719-724. |
[17] |
贺海升, 王琼, 王其兵, 王文杰. 围封年限对草原土壤养分及球囊霉素相关土壤蛋白含量的影响[J]. 安徽农业科学, 2016, 44(28): 114-116. |
[18] |
何斌, 温远光, 梁宏温, 李志先, 刘世荣. 英罗港红树植物群落不同演替阶段植物元素分布及其与土壤肥力的关系[J]. 植物生态学报, 2002(5): 518-524. |
[19] |
Alessandra, P., Mariana, A., Fabrizio, Q.C. (2000) Relationships be-tween Soil Structure, Root Distribution and Water Uptake of Chickpea ( Cicer arietinum L.). Plant Growth and Water Distribution. European Journal of Agronomy, 13, 39-45. https://doi.org/10.1016/S1161-0301(00)00056-3 |
[20] |
Stewart, B.A. and Hartge, K.H. (1995) Soil Structure: Its Development and Function. CRC Press, Boca Raton. |
[21] |
Eden, M., Moldrup, P., Schjønning, P., Vogel, H.-J., Scow, K.M. and de Jonge, L.W. (2012) Linking Soil Physical Parameters along a Density Gradient in a Loess-Soil Long-Term Experiment. Soil Science, 177, 1-11. https://doi.org/10.1097/SS.0b013e31823745a9 |
[22] |
卢金伟, 李占斌. 土壤团聚体研究进展[J]. 水土保持研究, 2002(1): 81-85. |
[23] |
Tisdall, J.M. and Oades, J.M. (1982) Organic Matter and Water-Stable Aggregates in Soils. Journal of Soil Science, 33, 141-163. https://doi.org/10.1111/j.1365-2389.1982.tb01755.x |
[24] |
Xie, H.T., Li, J.W., Zhang, B., Wang, L.F., Wang, J.K., He, H.B. and Zhang, X.D. (2015) Long-Term Manure Amendments Reduced Soil Aggregate Stability via Redistribution of the Glomalin-Related Soil Protein in Macroaggregates. Scientific Reports, 5, Article No. 14687. https://doi.org/10.1038/srep14687 |
[25] |
郑晓萍. 表征富铁土土壤侵蚀的团聚体稳定性及其物理学机制研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2002. |
[26] |
Rillig, M.C. (2004) Arbuscular Mycorrhizae, Glomalin, and Soil Aggregation. Canadian Journal of Soil Science, 84, 355-363. https://doi.org/10.4141/S04-003 |
[27] |
Marie, S. and Luise, G. (2010) Water-Stable Aggregates, Glomalin-Related Soil Protein, and Carbohydrates in a Chronosequence of Sandy Hydromorphic Soils. Soil Biology and Biochemistry, 42, 1505-1511. https://doi.org/10.1016/j.soilbio.2010.05.015 |
[28] |
Cambardella, C.A. and Elliott, E.T. (1993) Carbon and Nitrogen Distribution in Aggregates from Cultivated and Native Grassland Soils. Soil Science Society of America Journal, 57, 1071-1076. https://doi.org/10.2136/sssaj1993.03615995005700040032x |
[29] |
陈恩凤, 武冠云, 周礼恺. 关于土壤肥力研究的几点认识[J]. 土壤通报, 1989(4): 187-188, 163. |
[30] |
Wright, S.F. and Kristine, N. (2002) Glomalin: Hiding Place for a Third of the World’s Stored Soil Carbon. Agricultural Research, 50, 4. |
[31] |
袁瀛, 肖列. 退耕植被演替过程中土壤团聚体与胶结物质的协同响应[J]. 西南林业大学学报(自然科学), 2018, 38(3): 116-122. |
[32] |
Harner, M.J., Ramsey, P.W. and Rillig, M.C. (2004) Protein Accumulation and Distribution in Floodplain Soils and River Foam. Ecology Letters, 7, 829-836. https://doi.org/10.1111/j.1461-0248.2004.00638.x |
[33] |
于佳鑫. 山西太岳山华北落叶松人工林土壤团聚体稳定性及养分分布特征[D]: [硕士学位论文]. 北京: 北京林业大学, 2019. |
[34] |
Eynard, A., Schumacher, T.E., Lindstrom, M.J. and Malo, D.D. (2004) Aggregate Sizes and Stability in Cultivated South Dakota Prairie Ustolls and Usterts. Soil Science Society of America Journal, 68, 1360-1365. https://doi.org/10.2136/sssaj2004.1360 |
[35] |
王冰, 周扬, 张秋良. 兴安落叶松林龄对土壤团聚体分布及其有机碳含量的影响[J]. 生态学杂志, 2021, 40(6): 1618-1628 |
[36] |
胡琛, 贺云龙, 崔鸿侠, 黄金莲, 唐万鹏, 马国飞, 雷静品, 荣道军. 神农架4种典型人工林对土壤团聚体分布及稳定性的影响[J]. 中南林业科技大学学报, 2020, 40(12): 125-133. |
[37] |
朱利霞. 不同调控措施对旱作农田土壤碳氮及微生物学特性的影响[D]: [博士学位论文]. 咸阳: 西北农林科技大学, 2018. |
[38] |
Tong, X., He, X.Q., Duan, H.W., Han, L.J. and Huang, G.Q. (2018) Evaluation of Controlled Release Urea on the Dynamics of Nitrate, Ammonium, and Its Nitrogen Release in Black Soils of Northeast China. International Journal of Environmental Research and Public Health, 15, 119. https://doi.org/10.3390/ijerph15010119 |
[39] |
程曼. 宁南山区植被恢复对团聚体中有机碳组分分布的影响[D]: [硕士学位论文]. 咸阳: 西北农林科技大学, 2012. |
[40] |
Reeves, D.W. (1997) The Role of Soil Organic Matter in Maintaining Soil Quality in Continuous Cropping Systems. Soil & Tillage Research, 43, 131-167. https://doi.org/10.1016/S0167-1987(97)00038-X |
[41] |
Karlen, D.L., Mausbach, M.J., Doran, J.W., Cline, R.G., Harris, R.F. and Schuman, G.E. (1997) Soil Quality: A Concept, Definition, and Framework for Evaluation (A Guest Editorial). Soil Science Society of America Journal, 61, 4-10. https://doi.org/10.2136/sssaj1997.03615995006100010001x |
[42] |
Treseder, K.K. and Turner, K.M. (2007) Glomalin in Ecosystems. Soil Science Society of America Journal, 71, 1257-1266. https://doi.org/10.2136/sssaj2006.0377 |
[43] |
周玮. 花江峡谷喀斯特土壤酶与可氧化有机碳研究[D]: [硕士学位论文]. 贵阳: 贵州大学, 2007. |
[44] |
Miller, R.M. and Jastrow, J.D. (1992) The Role of Mycorrhizal Fungi in Soil Conservation. Mycorrhizae in Sustainable Agriculture, 54, 29-44. https://doi.org/10.2134/asaspecpub54.c2 |
[45] |
Bronick, C.J. and Lal, R. (2004) Soil Structure and Management: A Review. Geoderma, 124, 3-22. https://doi.org/10.1016/j.geoderma.2004.03.005 |
[46] |
Sik, C.C., Tae, K.B., Jin, C.H., Jeong, K.T. and Chul, S.S. (2003) Ruthenium-Catalyzed Oxidative Coupling and Cyclization between 2-Aminobenzyl Alcohol and Secondary Alcohols Leading to Quinolines. Tetrahedron, 59, 7997-8002. https://doi.org/10.1016/j.tet.2003.08.027 |
[47] |
Six, J., Conant, R.T., Paul, E.A. and Paustian. K. (2002) Stabilization Mechanisms of Soil Organic Matter: Implications for C-Saturation of Soils. Plant and Soil, 241, 155-176. https://doi.org/10.1023/A:1016125726789 |
[48] |
Rillig, M.C., Wright, S.F. and Eviner, V.T. (2002) The Role of Arbuscular Mycorrhizal Fungi and Glomalin in Soil Aggregation: Comparing Effects of Five Plant Species. Plant and Soil, 238, 325-333. https://doi.org/10.1023/A:1014483303813 |
[49] |
张文天. 森林演替及树种差异对真菌菌丝结合碳、土壤理化性质的影响[D]: [硕士学位论文]. 哈尔滨: 东北林业大学, 2013. |