[1] |
Surendra, K.C., Takara, D., Jasinski, J. and Khanal, S.K. (2013) Household Anaerobic Digester for Bioenergy Produc-tion in Developing Countries: Opportunities and Challenges. Environmental Technology, 34, 1671-1689. https://doi.org/10.1080/09593330.2013.824012 |
[2] |
Esposito, G., Frunzo, L., Giordano, A., et al. (2012) Anaer-obic Codigestion of Organic Wastes. Reviews in Environmental Science Bio/Technology, 11, 325-341. https://doi.org/10.1007/s11157-012-9277-8 |
[3] |
Rico, J.L., Garcia, H., Rico, C. and Tejero, I. (2007) Characteri-sation of Solid and Liquid Fractions of Dairy Manure with Regard to Their Component Distribution and Methane Pro-duction. Bioresource Technology, 98, 971-979. https://doi.org/10.1016/j.biortech.2006.04.032 |
[4] |
柴如山, 王擎运, 叶新新, 等. 我国主要粮食作物秸秆还田替代化学氮肥潜力[J]. 农业环境科学学报, 2019, 38(11): 2583-2593. |
[5] |
秦世平. 农作物秸秆气化的效果和前景——关于山东省莱州市秸秆气化集中供气的调查(上) [J]. 农业机械, 2001, 11(12): 37-38. |
[6] |
贾凡, 刘青松, 姜达. 农作物秸秆不同利用产生的环境效应[J]. 农业技术与装备, 2013(10): 4-6+8. |
[7] |
农业部新闻办公室. 我国主要农作物秸秆综合利用率超过80% [EB/OL]. http://www.gov.cn/xinwen/2016-05/26/content_5077037.htm, 2016-05-26. |
[8] |
Adl, M., Sheng, K.C. and Gharibi, A. (2012) Technical Assessment of Bioenergy Recovery from Cotton Stalks through Anaerobic Digestion Process and the Effects of Inexpensive Pre-Treatments. Applied Energy, 93, 251-260. https://doi.org/10.1016/j.apenergy.2011.11.065 |
[9] |
Chen, G.Y., Zheng, Z., Yang, S.G., Fang, C.X., Zou, X.X. and Zhang, J.B. (2010) Improving Conversion of Spartina alterniflora into Biogas by Co-Digestion with Cow Feces. Fuel Processing Technology, 91, 1416-1421. https://doi.org/10.1016/j.fuproc.2010.05.015 |
[10] |
Zhang, T., Liu, L.L., Song, Z.L., Ren, G.X., Feng, Y.Z., Han, X.H. and Yang, G.H. (2013) Biogas Production by Co-Digestion of Goat Manure with Three Crop Residues. PLoS ONE, 8, e66845. https://doi.org/10.1371/journal.pone.0066845 |
[11] |
张继泉, 孙玉英, 王瑞明, 等. 玉米秸秆水解液生产燃料酒精的研究[J]. 西部粮油科技, 2003, 28(5): 63-65. |
[12] |
刘娇, 宋公明, 马丽娟, 等. 不同预处理方法对玉米秸秆水解糖化效果的影响[J]. 饲料工业, 2008, 29(1): 31-32. |
[13] |
黄秀梅, 李建, 陈可泉, 等. 利用玉米秸秆水解液厌氧发酵产丁二酸的研究[J]. 中国酿造, 2009, 28(6): 31-34. |
[14] |
黄继川, 彭智平, 于俊红. 玉米秸秆堆肥处理对芥菜品质及土壤肥力的影响[J]. 广东农业科学, 2009(12): 88-91. |
[15] |
赵 英, 王秀全, 侯玉兵, 等. 施用秸秆堆肥对人参根系生长及产量的影响[J]. 吉林农业大学学报, 2010, 32(3): 307-311. |
[16] |
国家发展改革委办公厅, 农业部办公厅. 关于印发《秸秆综合利用技术目录2014》[EB/OL]. http://www.china-nengyuan.com/m/news_82952.html, 2015-09-15. |
[17] |
楚天舒, 杨增玲, 韩鲁佳. 中国农作物秸秆饲料化利用满足度和优势度分析[J]. 农业工程学报, 2016, 32(22): 1-9. |
[18] |
王强. 生物质能耦合发电的产业政策与经营模式[J]. 中国电力企业管理, 2017(34): 70-71. |
[19] |
杨晓东. 农作物秸秆基料化利用技术及效益分析[J]. 农业科技与装备, 2017(12): 41-43. |
[20] |
苑鹤, 李威, 蔡丹, 等. 秸秆原料化利用技术简介[J]. 河北农业, 2018(8): 33-34. |
[21] |
许博, 赵月, 鞠美庭, 等. 中国城市生活垃圾产生量的区域差异: 基于STIRPAT模型[J]. 中国环境科学, 2019, 39(11): 4901-4909. |
[22] |
Xu, Q.Y. and Ge, J.J. (2011) Reduction of CO2 Emission Using Bio-reactor Technology for Waste Management in China. Energy Procedia, 5, 1026-1031. https://doi.org/10.1016/j.egypro.2011.03.181 |
[23] |
裴占江, 刘杰, 王栗, 等. 餐厨垃圾与牛粪联合厌氧消化效率研究[J]. 中国沼气, 2014, 32(4): 3-7. |
[24] |
Tian, H.L., Duan, N., Lin, C., Li, X. and Zhong, M.Z. (2015) Anaerobic Co-Digestion of Kitchen Waste and Pig Manure with Different Mixing Ratios. Journal of Bioscience and Bioengineering, 120, 51-57. https://doi.org/10.1016/j.jbiosc.2014.11.017 |
[25] |
班福忱, 姜亚玲, 韩雪. 自动分选-除渣-厌氧消化处理有机垃圾[J]. 环境工程学报, 2015, 9(8): 4032-4036. |
[26] |
罗珈柠, 郑思俊, 王妍婷, 等. 原料对餐厨垃圾堆肥产品的影响及其绿地应用适宜性分析[J]. 环境工程学报, 2014, 8(11): 4977-4983. |
[27] |
Kim, C.H., Nam, S.W., Choi, W.B., et al. (2007) Aerobic Composting Process of Garbage Using Thermo Acidophilic Bacillus sp. SJ-15. Journal of Life Science, 17, 735-739. https://doi.org/10.5352/JLS.2007.17.5.735 |
[28] |
冯明谦, 刘德明. 滚筒式高温堆肥中微生物种类数量的研究[J]. 中国环境科学, 1999, 19(6): 490-492. |
[29] |
马溪曼, 陆彦宇, 谢志全, 等. 添加碳氮代谢相关微生物对堆肥过程中菌群结构的影响[J]. 环境工程, 2015, 33(12): 95-99, 104. |
[30] |
陈志强, 吕炳南, 于春晓, 等. 城市垃圾好氧堆肥处理的几个关键问题[J]. 城市环境与城市生态, 2002, 15(6): 45-47. |
[31] |
任连海, 黄燕冰, 王攀. 含盐量对餐厨垃圾堆肥理化特性变化规律的影响[J]. 重庆大学学报, 2014, 37(7): 104-109. |
[32] |
曲伟国, 王琦, 靳俊平, 等. 餐厨垃圾提取生物柴油技术及其应用[J]. 环境卫生工程, 2013, 21(1): 35-36. |
[33] |
甄峰, 李东, 孙永明, 等. 生活垃圾处理项目中综合处理技术的应用[J]. 可再生能源, 2012, 30(5): 119-124. |
[34] |
Tavares, R., Ramos, A. and Rouboa, A. (2019) A Theoretical Study on Municipal Solid Waste Plasma Gasification. Waste Management, 90, 37-45. https://doi.org/10.1016/j.wasman.2019.03.051 |
[35] |
Chen, Z., Zheng, Z., Li, D., et al. (2020) Continuous Supercritical Water Oxidation Treatment of Oil-Based Drill Cuttings Using Municipal Sewage Sludge as Diluent. Journal of Hazardous Materials, 384, 121-225. https://doi.org/10.1016/j.jhazmat.2019.121225 |
[36] |
席北斗, 刘东明, 李鸣晓, 等. 我国固废资源化的技术及创新发展[J]. 环境保护, 2017, 45(20): 16-19. |
[37] |
Lemmens, B., Elslander, H., Vanderreydt, I., et al. (2007) Assessment of Plasma Gasification of High Caloric Waste Streams. Waste Management, 27, 1562-1569. https://doi.org/10.1016/j.wasman.2006.07.027 |
[38] |
Sanlisoy, A. and Carpinlioglu, M.O. (2017) A Review on Plasma Gasification for Solid Waste Disposal. International Journal of Hydrogen Energy, 42, 1361-1365. https://doi.org/10.1016/j.ijhydene.2016.06.008 |
[39] |
Ramos, A., Berzosa, J., Espí, J., et al. (2020) Life Cycle Costing for Plasma Gasification of Municipal Solid Waste: A Socioeconomic Approach. Energy Conversion and Management, 209, Article ID: 112508. https://doi.org/10.1016/j.enconman.2020.112508 |
[40] |
Lu, L. and Ren, Z.J. (2016) Microbial Electrolysis Cells for Waste Biorefinery: A State of the Art Review. Bioresource Technology, 215, 254-264. https://doi.org/10.1016/j.biortech.2016.03.034 |