[1] |
Lebauer, D.S. and Treseder, K.K. (2006) Nitrogen Limitation of Terrestrial Net Primary Production: Global Patterns from Field Studies with Nitrogen Fertilization. Proceedings of the AGU Fall Meeting, San Francisco, California, December 2006, B24B-05. |
[2] |
Kopáek, J., Cosby, B.J., Evans, C.D., et al. (2013) Nitrogen, Organic Carbon and Sulphur Cycling in Terrestrial Ecosystems: Linking Nitrogen Saturation to Carbon Limitation of Soil Microbial Processes. Biogeochemistry, 115, 33-51. https://doi.org/10.1007/s10533-013-9892-7 |
[3] |
Galloway, J.N., Townsend, A.R., Erisman, J.W., et al. (2008) Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science, 320, 889-892. https://doi.org/10.1126/science.1136674 |
[4] |
Zhou, J., Jiang, X., Wei, D., et al. (2017) Consistent Effects of Ni-trogen Fertilization on Soil Bacterial Communities in Black Soils for Two Crop Seasons in China. Scientific Reports, 7, Article No. 3267. https://doi.org/10.1038/s41598-017-03539-6 |
[5] |
Hiltner, L. (1904) Uber neuer Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie unter besonderer Berücksichtigung der Gründüngung und Brache. Soil Biology and Biochemistry, 32, 1405-1417. |
[6] |
Wang, Q., Jiang, X., Guan, D., et al. (2017) Long-Term Fertilization Changes Bacterial Diversity and Bacterial Communities in the Maize Rhizosphere of Chinese Mollisols. Applied Soil Ecology, 125, 88-96. https://doi.org/10.1016/j.apsoil.2017.12.007 |
[7] |
Jones, D.L., Nguyen, C. and Finlay, R.D. (2009) Carbon Flow in the Rhizosphere: Carbon Trading at the Soil-Root Interface. Plant and Soil, 321, 5-33. https://doi.org/10.1007/s11104-009-9925-0 |
[8] |
Herman, D.J., Johnson, K.K., Jaeger, C.H., et al. (2006) Root Influence on Nitrogen Mineralization and Nitrification in Rhizosphere Soil. Soil Science Society of America Journal, 70, 60-66. https://doi.org/10.2136/sssaj2005.0113 |
[9] |
Finzi, A.C., Abramoff, R.Z., Spiller, K.S., et al. (2015) Rhizosphere Processes Are Quantitatively Important Components of Terrestrial Carbon and Nutrient Cycles. Global Change Biology, 21, 2082-2094. https://doi.org/10.1111/gcb.12816 |
[10] |
Hristov, A.N., Ott, T., Tricarico, J., et al. (2013) Mitigation of Methane and Nitrous Oxide Emissions from Animal Operations: III. A Review of Animal Management Mitigation Options. Journal of Animal Science, 91, 5095-5113. https://doi.org/10.2527/jas.2013-6585 |
[11] |
Thiessen, S., Gleixner, G., Wutzler, T., et al. (2013) Both Priming and Temperature Sensitivity of Soil Organic Matter Decomposition Depend on Microbial Biomass—An Incubation Study. Soil Biology & Biochemistry, 57, 739-748. https://doi.org/10.1016/j.soilbio.2012.10.029 |
[12] |
Groleau-Renaud, V., Plantureux, S. and Guckert, A. (1998) In-fluence of Plant Morphology on Root Exudation of Maize Subjected to Mechanical Impedance in Hydroponic Conditions. Plant & Soil, 201, 231-239. https://doi.org/10.1023/A:1004316416034 |
[13] |
He, W., et al. (2017) Effects of Nitrogen Enrichment on Root Exudative Carbon Inputs in Sibiraea angustata Shrubbery at the Eastern Fringe of Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 41, 610-621. https://doi.org/10.17521/cjpe.2016.0329 |
[14] |
Aitkenhead-Peterson, J.A. and Kalbitz, K. (2010) Short-Term Re-sponse on the Quantity and Quality of Rhizo-Deposited Carbon from Norway Spruce Exposed to Low and High N In-puts. Journal of Plant Nutrition and Soil Science, 168, 687-693. https://doi.org/10.1002/jpln.200420468 |
[15] |
Phillips, R.P., Finzi, A.C. and Bernhardt, E.S. (2011) Enhanced Root Exudation Induces Microbial Feedbacks to N Cycling in a Pine Forest under Long-Term CO2 Fumigation. Ecology Letters, 14, 187-194. https://doi.org/10.1111/j.1461-0248.2010.01570.x |
[16] |
Fransson, P.M.A. and Johansson, E.M. (2010) Elevated CO2 and Nitrogen Influence Exudation of Soluble Organic Compounds by Ectomycorrhizal Root Systems. FEMS Mi-crobiology Ecology, 71, 186-196. https://doi.org/10.1111/j.1574-6941.2009.00795.x |
[17] |
Uselman, S.M., Qualls, R.G. and Thomas, R.B. (2000) Effects of Increased Atmospheric CO2, Temperature, and Soil N Availability on Root Exudation of Dissolved Organic Carbon by a N-Fixing Tree (Robinia pseudoacacia L.). Plant & Soil, 222, 191-202. https://doi.org/10.1023/A:1004705416108 |
[18] |
杨建华, 王芳, 张军辉, 等. 长期施氮与减水处理对红松和蒙古栎根际磷浓度的影响[J]. 生态学杂志, 2015(10): 2699-2704. |
[19] |
李德军, 莫江明, 方运霆, 等. 氮沉降对森林植物的影响[J]. 生态学报, 2003, 23(9): 1891-1900. |
[20] |
Hodge, A., Grayston, S.J. and Ord, B.G. (1996) A Novel Method for Soil Characterization and Quantification of Plant Root Exudates. Plant & Soil, 184, 97-104. https://doi.org/10.1007/BF00029278 |
[21] |
Uselman, S.M., Qualls, R.G. and Thomas, R.B. (1999) A Test of a Po-tential Short Cut in the Nitrogen Cycle: The Role of Exudation of Symbiotically Fixed Nitrogen from the Roots of a N-Fixing Tree and the Effects of Increased Atmospheric CO2 and Temperature. Plant & Soil, 210, 21-32. https://doi.org/10.1023/A:1004619509878 |
[22] |
Luo, Y.Q., Zhao, X.Y. and Li, M.X. (2012) Ecological Effect of Plant Root Exudates and Related Affecting Factors: A Review. The Journal of Applied Ecology, 23, 3496-3504. |
[23] |
肖娟. 夜间增温和施氮对两种川西亚高山针叶树幼苗根系分泌物的影响研究[D]: [博士学位论文]. 北京: 中国科学院大学, 2013. |
[24] |
Yin, H., Li, Y., Xiao, J., et al. (2013) Enhanced Root Exudation Stimulates Soil Nitrogen Transformations in a Subalpine Coniferous Forest under Experimental Warming. Global Change Biology, 19, 2158-2167. https://doi.org/10.1111/gcb.12161 |
[25] |
涂书新, 吴佳. 植物根系分泌物研究方法评述[J]. 生态环境学报, 2010, 19(10): 2493-2500. |
[26] |
Zhalnina, K., Louie, K.B., Hao, Z., et al. (2018) Dynamic Root Exudate Chemistry and Microbial Substrate Preferences Drive Patterns in Rhizosphere Microbial Community Assembly. Nature Microbiology, 3, 470-480. https://doi.org/10.1038/s41564-018-0129-3 |
[27] |
Keiluweit, M., Bougoure, J.J., Nico, P.S., et al. (2015) Mineral Protection of Soil Carbon Counteracted by Root Exudates. Nature Climate Change, 5, 588-595. https://doi.org/10.1038/nclimate2580 |
[28] |
Yuan, Y., Zhao, W., Zhang, Z., et al. (2018) Impacts of Oxalic Acid and Glucose Additions on N Transformation in Microcosms via Artificial Roots. Soil Biology and Biochemistry, 121, 16-23. https://doi.org/10.1016/j.soilbio.2018.03.002 |
[29] |
李春格, 李晓鸣, 王敬国. 大豆连作对土体和根际微生物群落功能的影响[J]. 生态学报, 2006(4): 1144-1150. |
[30] |
Shi, S., Condron, L., Larsen, S., et al. (2011) In Situ Sampling of Low Molecular Weight Organic Anions from Rhizosphere of Radiata Pine (Pinus radiata) Grown in a Rhizotron System. Environmental & Experimental Botany, 70, 131-142. https://doi.org/10.1016/j.envexpbot.2010.08.010 |
[31] |
Phillips, R.P., Erlitz, Y., Bier, R., et al. (2008) New Ap-proach for Capturing Soluble Root Exudates in Forest Soils. Functional Ecology, 22, 990-999. https://doi.org/10.1111/j.1365-2435.2008.01495.x |
[32] |
Cleveland, C.C. and Liptzin, D. (2007) C:N:P Stoichiom-etry in Soil: Is There a “Redfield Ratio” for the Microbial Biomass? Biogeochemistry, 85, 235-252. https://doi.org/10.1007/s10533-007-9132-0 |
[33] |
Kuzyakov, Y. and Cheng, W. (2001) Photosynthesis Controls of Rhizosphere Respiration and Organic Matter Decomposition. Soil Biology & Biochemistry, 33, 1915-1925. https://doi.org/10.1016/S0038-0717(01)00117-1 |
[34] |
Drake, J.E., Darby, B.A., Giasson, M.A., et al. (2013) Stoichiometry Constrains Microbial Response to Root Exudation—Insights from a Model and a Field Experiment in a Temperate Forest. Biogeosciences, 10, 821-838. https://doi.org/10.5194/bg-10-821-2013 |
[35] |
Sullivan, B.W., et al. (2013) Evaluation of Mechanisms Controlling the Priming of Soil Carbon along a Substrate Age Gradient. Soil Biology and Biochemistry, 58, 293-301. https://doi.org/10.1016/j.soilbio.2012.12.007 |
[36] |
Chen, R., Senbayram, M., Blagodatsky, S., et al. (2014) Soil C and N Availability Determine the Priming Effect: Microbial N Mining and Stoichiometric Decomposition Theories. Global Change Biology, 20, 2356-2367. https://doi.org/10.1111/gcb.12475 |
[37] |
Philippot, L., Raaijmakers, J.M., Lemanceau, P., et al. (2013) Going Back to the Roots: The Microbial Ecology of the Rhizosphere. Nature Reviews Microbiology, 11, 789-799. https://doi.org/10.1038/nrmicro3109 |
[38] |
Ai, C., Liang, G., Sun, J., et al. (2015) Reduced Dependence of Rhizosphere Microbiome on Plant-Derived Carbon in 32-Year Long-Term Inorganic and Organic Fertilized Soils. Soil Biology & Biochemistry, 80, 70-78. https://doi.org/10.1016/j.soilbio.2014.09.028 |
[39] |
Paungfoo-Lonhienne, C., Yeoh, Y.K., Kasinadhuni, N.R.P., et al. (2015) Nitrogen Fertilizer Dose Alters Fungal Communities in Sugarcane Soil and Rhizosphere. Scientific Reports, 5, Article No. 8678. https://doi.org/10.1038/srep08678 |
[40] |
Darbyshire, J.F., et al. (1973) Bacteria and Protozoa in the Rhizosphere. Pesticide Science, 4, 349-360. https://doi.org/10.1002/ps.2780040312 |
[41] |
罗明单, 文启凯, 潘伯荣. 几种固沙植物根际土壤微生物特性研究[J]. 应用与环境生物学报, 2002, 8(6): 618-622. |
[42] |
厉婉华, 等. 苏南丘陵区不同林分下根际根外土壤微生物区系及酶活性[J]. 生态学杂志, 1994(6): 11-14. |
[43] |
章家恩, 刘文高, 王伟胜. 南亚热带不同植被根际微生物数量与根际土壤养分状况[J]. 生态环境学报, 2002, 11(3): 279-282. |
[44] |
Treseder, K.K. (2010) Nitrogen Additions and Microbial Biomass: A Meta-Analysis of Ecosystem Studies. Ecology Letters, 11, 1111-1120. https://doi.org/10.1111/j.1461-0248.2008.01230.x |
[45] |
Yin, H., Xiao, J., Li, Y., et al. (2013) Warming Effects on Root Morphological and Physiological Traits: The Potential Consequences on Soil C Dynamics as Altered Root Exudation. Agricultural and Forest Meteorology, 180, 287-296. https://doi.org/10.1016/j.agrformet.2013.06.016 |
[46] |
孙悦, 徐兴良, Kuzyakov, Y. 根际激发效应的发生机制及其生态重要性[J]. 植物生态学报, 2014, 38(1): 62-75. |
[47] |
Warren, C.R. (2016) Simultaneous Efflux and Uptake of Metabolites by Roots of Wheat. Plant & Soil, 406, 359-374. https://doi.org/10.1007/s11104-016-2892-3 |
[48] |
Yin, H., Wheeler, E. and Phillips, R.P. (2014) Root-Induced Changes in Nutrient Cycling in Forests Depend on Exudation Rates. Soil Biology & Biochemistry, 78, 213-221. https://doi.org/10.1016/j.soilbio.2014.07.022 |
[49] |
Cheng, W., Parton, W.J., Gonzalez-Meler, M.A., et al. (2013) Synthesis and Modeling Perspectives of Rhizosphere Priming. New Phytologist, 201, 31-44. https://doi.org/10.1111/nph.12440 |
[50] |
Espinosa-Urgel, M. and Ramos, J.L. (2001) Expression of a Pseudomonas putida Aminotransferase Involved in Lysine Catabolism Is Induced in the Rhizosphere. Applied & Environmental Microbiology, 67, 5219-5224. https://doi.org/10.1128/AEM.67.11.5219-5224.2001 |
[51] |
Zhu, B. and Cheng, W. (2011) Rhizosphere Priming Effect Increases the Temperature Sensitivity of Soil Organic Matter Decomposition. Global Change Biology, 17, 2172-2183. https://doi.org/10.1111/j.1365-2486.2010.02354.x |
[52] |
Hinsinger, P., Gobran, G.R., Gregory, P.J., et al. (2010) Rhizosphere Geometry and Heterogeneity Arising from Root-Mediated Physical and Chemical Processes. New Phytologist, 168, 293-303. https://doi.org/10.1111/j.1469-8137.2005.01512.x |
[53] |
Preece, C., et al. (2018) Thirsty Tree Roots Exude More Carbon. Tree Physiology, 38, 690-695. https://doi.org/10.1093/treephys/tpx163 |
[54] |
Nakayama, M. and Tateno, R. (2018) Solar Radiation Strongly Influences the Quantity of Forest Tree Root Exudates. Trees, 32, 871-879. https://doi.org/10.1007/s00468-018-1685-0 |
[55] |
Proctor, C. and He, Y. (2017) Quantifying Root Extracts and Exudates of Sedge and Shrub in Relation to Root Morphology. Soil Biology and Biochemistry, 114, 168-180. https://doi.org/10.1016/j.soilbio.2017.07.006 |
[56] |
Guo, D., Mitchell, R.J., Withington, J.M., et al. (2008) Endogenous and Exogenous Controls of Root Life Span, Mortality and Nitrogen Flux in a Longleaf Pine Forest: Root Branch Order Predominates. Journal of Ecology, 96, 737-745. https://doi.org/10.1111/j.1365-2745.2008.01385.x |
[57] |
Mccormack, M.L., Dickie, I.A., Eissenstat, D.M., et al. (2015) Redefining Fine Roots Improves Understanding of Below-Ground Contributions to Terrestrial Biosphere Processes. New Phytologist, 207, 505-518. https://doi.org/10.1111/nph.13363 |