[1] |
Gruber, N. and Galloway, J.N. (2008) An Earth-System Perspective of the Global Nitrogen Cycle. Nature, 451, 293-296. https://doi.org/10.1038/nature06592 |
[2] |
Galloway, J.N., et al. (2008) Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science, 320, 889-892. https://doi.org/10.1126/science.1136674 |
[3] |
Lebauer, D.S. and Treseder, K.K. (2008) Nitrogen Limitation of Net Primary Productivity in Terrestrial Ecosystems Is Globally Distributed. Ecology, 89, 371-379. https://doi.org/10.1890/06-2057.1 |
[4] |
Yuan, Z.Y. and Chen, H.Y.H. (2012) A Global Analysis of Fine Root Production as Affected by Soil Nitrogen and Phosphorus. Proceedings of the Royal Society B: Biological Sciences, 279, 3796-3802. https://doi.org/10.1098/rspb.2012.0955 |
[5] |
Bobbink, R., et al. (2010) Global Assessment of Nitrogen Deposition Effects on Terrestrial Plant Diversity: A Synthesis. Ecological Applications, 20, 30-59. https://doi.org/10.1890/08-1140.1 |
[6] |
Janssens, I.A., et al. (2010) Reduction of Forest Soil Respiration in Re-sponse to Nitrogen Deposition. Nature Geoscience, 3, 315-322. https://doi.org/10.1038/ngeo844 |
[7] |
Galloway, J.N., et al. (2005) The Global Nitrogen Cycle: Past, Present and Future. Science in China Series C: Life Sciences, 48, 669-677. |
[8] |
Neff, J.C., Townsend, A.R., Gleixner, G., et al. (2002) Variable Effects of Nitrogen Additions on the Stability and Turnover of Soil Carbon. Nature, 419, 915-917. https://doi.org/10.1038/nature01136 |
[9] |
Yu, G.R., Jia, Y.L., He, N.P., Zhu, J.X., Chen, Z., Wang, Q.F., et al. (2019) Stabilization of Atmospheric Nitrogen Deposition in China over the Past Decade. Nature Geoscience, 12, 424-429. https://doi.org/10.1038/s41561-019-0352-4 |
[10] |
Craine, J.M. (2020) Looking Back in Time to Reconstruct Ni-trogen Availability Trajectories. Global Change Biology, 26, 5404-5413. https://doi.org/10.1111/gcb.15222 |
[11] |
李德军, 莫江明, 方运霆, 彭少麟, Gundersen, P. 氮沉降对森林植物的影响[J]. 生态学报, 2003, 23(9): 1891-1900. |
[12] |
Strengbom, J., et al. (2003) Regional Differences in the Occurrence of Understorey Species Reflect Nitrogen Deposition in Swedish Forests. AMBIO: A Journal of the Human Environment, 32, 91-97. https://doi.org/10.1579/0044-7447-32.2.91 |
[13] |
Stevens, C.J., Dise, N.B., Mountford, J.O. and Gowing, D.J. (2004) Impact of Nitrogen Deposition on the Species Richness of Grasslands. Science, 303, 1876-1879. |
[14] |
Tate, R.L. (1992) Nitrogen in Terrestrial Ecosystems: Questions of Productivity, Vegetational Changes, and Ecosystem Stability. Soil Science. Springer, Berlin. https://doi.org/10.1097/00010694-199212000-00010 |
[15] |
Hurd, T.M., Brach, A.R. and Raynal, D.J. (1998) Response of Understory Vegetation of Adirondack Forests to Nitrogen Additions. Canadian Journal of Forest Research, 28, 799-807. https://doi.org/10.1139/x98-045 |
[16] |
Strengbom, J., Nordin, A., Näsholm, T. and Ericson, L. (2001) Slow Recovery of Boreal Forest Ecosystem Following Decreased Nitrogen Input. Functional Ecology, 15, 451-457. https://doi.org/10.1046/j.0269-8463.2001.00538.x |
[17] |
You, C., et al. (2018) Nutrient-Limited Conditions Determine the Responses of Foliar Nitrogen and Phosphorus Stoichiometry to Nitrogen Addition: A Global Meta-Analysis. Environmental Pollution, 241, 740-749. https://doi.org/10.1016/j.envpol.2018.06.018 |
[18] |
Yasumura, Y., Hikosaka, K., Matsui, K. and Hirose, T. (2002) Leaf-Level Nitrogen-Use Efficiency of Canopy and Understory Species in a Beech Forest. Functional Ecology, 16, 826-834. https://doi.org/10.1046/j.1365-2435.2002.00691.x |
[19] |
Marschner, P. (2013) Mineral Nutrition of Higher Plants. Elsevier, New York. |
[20] |
张丽霞. 植物N:P计量化学: 中国高等植物的分异规律与野外实验初步验证[D]: [博士学位论文]. 北京: 中国科学院研究生院(植物研究所), 2003. |
[21] |
Mcgroddy, M.E., Daufresne, T. and Hedin, L.O. (2004) Scaling of C:N:P Stoichiometry in Forests Worldwide: Implications of Terrestrial Redfield-Type Ratios. Ecology, 85, 2390-2401. https://doi.org/10.1890/03-0351 |
[22] |
Reich, P.B. and Oleksyn, J. (2004) Global Patterns of Plant Leaf N and P in Relation to Temperature and Latitude. Proceedings of the National Academy of Sciences, 101, 11001-11006. https://doi.org/10.1073/pnas.0403588101 |
[23] |
张珂, 等. 阿拉善荒漠典型植物叶片碳、氮、磷化学计量特征[J]. 生态学报, 2014, 34(22): 6538-6547. |
[24] |
Livingston, N.J., Guy, R.D., Sun, Z.J. and Ethier, G.J. (2010) The Effects of Nitrogen Stress on the Stable Carbon Isotope Composition, Productivity and Water Use Efficiency of White Spruce (Picea glauca (Moench) Voss) Seedlings. Plant Cell and Environment, 22, 281-289. https://doi.org/10.1046/j.1365-3040.1999.00400.x |
[25] |
Chapin, F.S. and Cleve, K.V. (2000) Approaches to Stud-ying Nutrient Uptake, Use and Loss in Plants. Springer, Berlin. https://doi.org/10.1007/978-94-010-9013-1_10 |
[26] |
Meng, W., et al. (2014) Nutrient Resorption of Two Evergreen Shrubs in Response to Long-Term Fertilization in a Bog. Oecologia, 174, 365-377. https://doi.org/10.1007/s00442-013-2784-7 |
[27] |
Iversen, C.M., Bridgham, S.D. and Kellogg, L.E. (2010) Scaling Plant Nitrogen Use and Uptake Efficiencies in Response to Nutrient Addition in Peatlands. Ecology, 91, 693-707. https://doi.org/10.1890/09-0064.1 |
[28] |
Yue, et al. (2019) Stoichiometric Characteristics of Nitrogen and Phos-phorus in Leaf-Litter-Soil System of Pinus sylvestris var. mongolica Plantations. The Journal of Applied Ecology, 30, 743-750. |
[29] |
曾德慧, 陈广生. 生态化学计量学:复杂生命系统奥秘的探索[J]. 植物生态学报, 2005, 29(6): 141-153. |
[30] |
Elser, J.J., Fagan, W.F., Kerkhoff, A.J. and Enquist, N.G.S.J. (2010) Biological Stoichiometry of Plant Production: Metabolism, Scaling and Ecological Response to Global Change. New Phytologist, 186, 593-608. https://doi.org/10.1111/j.1469-8137.2010.03214.x |
[31] |
Güsewell, S. (2004) N:P Ratios in Terrestrial Plants: Var-iation and Functional Significance. New Phytologist, 164, 243-266. https://doi.org/10.1111/j.1469-8137.2004.01192.x |
[32] |
黄郡, 苑泽宁. 土壤碳氮磷生态化学计量特征及影响因素概述[J]. 现代农业研究, 2020(1): 73-76. |
[33] |
Lange, M., et al. (2015) Plant Diversity Increases Soil Microbial Activity and Soil Carbon Storage. Nature Communications, 6, 6707. https://doi.org/10.1038/ncomms7707 |
[34] |
Lavoie, M., Mack, M.C. and Schuur, E.A.G. (2011) Effects of Elevated Nitrogen and Temperature on Carbon and Nitrogen Dynamics in Alaskan Arctic and Boreal Soils. Journal of Geo-physical Research: Biogeosciences (2005-2012), 116, 1-14. https://doi.org/10.1029/2010JG001629 |
[35] |
Chapin, F.S., Matson, P.A. and Vitousek, P.M. (2012) Principles of Terrestrial Ecosystem Ecology. Springer, Berlin. https://doi.org/10.1007/978-1-4419-9504-9 |
[36] |
Xia, J. and Wan, S. (2008) Global Response Patterns of Terrestrial Plant Species to Nitrogen Addition. New Phytologist, 179, 428-439. https://doi.org/10.1111/j.1469-8137.2008.02488.x |
[37] |
Krause, K., Cherubini, P., Bugmann, H. and Schleppi, P. (2012) Growth Enhancement of Picea abies Trees under Long-Term, Low-Dose N Addition Is Due to Morphological More than to Physiological Changes. Tree Physiology, 32, 1471-1481. https://doi.org/10.1093/treephys/tps109 |
[38] |
高宗宝, 王洪义, 吕晓涛, 王正文. 氮磷添加对呼伦贝尔草甸草原4种优势植物根系和叶片C:N:P化学计量特征的影响[J]. 生态学杂志, 2017, 36(1): 80-88. |
[39] |
李明月, 等. 模拟氮沉降条件下木荷幼苗光合特性、生物量与C、N、P分配格局[J]. 生态学报, 2013, 33(5): 1569-1577. |
[40] |
Chen, S., Bai, Y., Zhang, L. and Han, X. (2005) Com-paring Physiological Responses of Two Dominant Grass Species to Nitrogen Addition in Xilin River Basin of China. Environmental and Experimental Botany, 53, 65-75. https://doi.org/10.1016/j.envexpbot.2004.03.002 |
[41] |
Brown, K.R., Thompson, W.A., Camm, E.L., Guy, R.D. and Hawkins, B.J. (1996) Effects of N Addition Rates on the Productivity of Picea sitchensis, Thuja plicata, and Tsuga heterophylla Seedlings. Trees, 10, 198-205. https://doi.org/10.1007/BF02340772 |
[42] |
Shangguan, Z.P., et al. (2000) Nitrogen Nutrition and Water Stress Ef-fects on Leaf Photosynthetic Gas Exchange and Water Use Efficiency in Winter Wheat. Environmental and Experimental Botany, 44, 141-149. |
[43] |
Gren, G.R.I., Wetterstedt, J.M. and Billberger, M.F.K. (2012) Nutrient Limitation on Terrestrial Plant Growth—Modeling the Interaction between Nitrogen and Phosphorus. New Phytologist, 194, 953-960. https://doi.org/10.1111/j.1469-8137.2012.04116.x |
[44] |
Elser, J.J.F., William, F. and Denno, R.F. (2000) Nutri-tional Constraints in Terrestrial and Freshwater Food Webs. Nature, 408, 578-580. https://doi.org/10.1038/35046058 |
[45] |
Han, W., Fang, J., Guo, D. and Zhang, Y. (2005) Leaf Nitrogen and Phosphorus Stoichiometry across 753 Terrestrial Plant Species in China. New Phytologist, 168, 377-385. https://doi.org/10.1111/j.1469-8137.2005.01530.x |
[46] |
Sun, Y., Wang, C., Chen, H.Y.H. and Ruan, H. (2020) Responses of C:N Stoichiometry in Plants, Soil, and Microorganisms to Nitrogen Addition. Plant and Soil, 456, 1-11. https://doi.org/10.1007/s11104-020-04717-8 |
[47] |
Ed, S. (1987) Plant Life Forms and Their Carbon, Water and Nutrient Relations. |
[48] |
Lu, M., Yang, Y., Luo, Y., Fang, C. and Li, B. (2011) Responses of Ecosystem Nitrogen Cycle to Nitrogen Addition: A Meta-Analysis. New Phytologist, 189, 1040-1050. https://doi.org/10.1111/j.1469-8137.2010.03563.x |
[49] |
Yuan, Z.Y., et al. (2006) Nitrogen Response Efficiency Increased Monotonically with Decreasing Soil Resource Availability: A Case Study from a Semiarid Grassland in Northern China. Oecologia, 148, 564-572. https://doi.org/10.1007/s00442-006-0409-0 |
[50] |
张璐璐, 李艳, 王孝安, 朱志红, 李英年. 刈割与施肥对高寒草甸土壤和植物N、P化学计量学特征的影响[J]. 西北植物学报, 2017, 37(11): 2256-2264. |
[51] |
严正兵, 金南瑛, 韩廷申, 方精云, 韩文轩. 氮磷施肥对拟南芥叶片碳氮磷化学计量特征的影响[J]. 植物生态学报, 2013, 37(6): 551-557. |
[52] |
Sardans, J., Rivas-Ubach, A. and PeUelas, J. (2012) The C:N:P Stoichiometry of Organisms and Eco-systems in a Changing World: A Review and Perspectives. Perspectives in Plant Ecology Evolution and Systematics, 14, 33-47. https://doi.org/10.1016/j.ppees.2011.08.002 |
[53] |
刘洋, 张健, 陈亚梅, 陈磊, 刘强. 氮磷添加对巨桉幼苗生物量分配和C:N:P化学计量特征的影响[J]. 植物生态学报, 2013, 37(10): 933-941. |