[1] |
王利民. 准脆性材料黏聚阻裂的计算与实验[J]. 力学季刊, 2013, 3(34): 456-462. |
[2] |
王青原. 基于三点弯曲梁试验的准脆性材料断裂行为研究[D]: [硕士学位论文]. 贵阳: 贵州大学, 2018. |
[3] |
王利民, 韩巍巍. 准脆性材料损伤破坏的细宏观联结分析[J]. 固体力学学报, 2015, 36(S1): 20-25. |
[4] |
霍新. 基于Cosserat理论混凝土等准脆性材料弯曲性能尺寸效应[D]: [硕士学位论文]. 北京: 北京交通大学, 2018. |
[5] |
Holmquist, T.J. and Johnson, G.R. (1993) A Computational Constitutive Model for Concrete Subjected to Large Strains, High Strain Rates and High Pressures. 14th International Symposium on Ballistics, Quebec, 26-29 September 1993, 591-600. |
[6] |
Riedel, W. (1999) Penetration of Reinforced Concrete by BETA-B-500 Numerical Analysis Using a New Macroscopic Concrete Model for Hydrocodes. 9th International Symposium, Interaction of the Effects of Munitions with Structures, Berlin, 3-7 May 1999, 315-322. |
[7] |
Malvar, L.J., Crawford, J.E., Wesevich, J.W., et al. (1997) A Plasticity Concrete Material Model for DYNA3D. International Journal of Impact Engineering, 19, 847-873. https://doi.org/10.1016/S0734-743X(97)00023-7 |
[8] |
朱兆祥. 环氧树脂在高应变率下的热黏弹性本构方程和时温等效性[J]. 宁波大学学报, 1988, 1(1): 58-68. |
[9] |
郭德勇, 吕鹏飞, 赵杰超. 煤岩冲击变形破坏特性及其本构模型[J]. 煤炭学报, 2018, 43(8): 2233-2242. |
[10] |
Abrams, D.A. (1917) Effect of Rate of Application of Load on the Compressive Strength of Concrete. ASTM Journal, 17, 364-377. |
[11] |
Taylor, L.M., Chen, E.P. and Kuszmaul, J.S. (1986) Microcrack-Induced Damage Accumulation in Brittle Rock under Dynamic Loading. Computer Methods in Applied Mechanics & Engineering, 55, 301-320. https://doi.org/10.1016/0045-7825(86)90057-5 |
[12] |
许浒, 余志祥, 赵世春. 混凝土非线性分析中的非协调参数Drucker-Prager模型[J]. 四川大学学报(工程科学版), 2012, 44(4): 75-80. |
[13] |
周永强, 盛谦, 罗红星. 考虑率效应的岩石材料次加载面动态本构模型[J]. 岩土工程学报, 2018, 40(10): 1818-1826. |
[14] |
白冰, 李小春, 石露. 基于虚强度参数的塑性硬化模式[J]. 长江科学院院报, 2012, 29(8): 24-28. |
[15] |
Budiansky, B. and O’Connell, R.J. (1976) Elastic Moduli of Cracked Solid. International Journal of Solids & Structures, 21, 61-72. https://doi.org/10.1016/0020-7683(76)90044-5 |
[16] |
Suaris, W. (2016) Constitutive Model for Dynamic Loading of Concrete. Journal of Structural Engineering, 111, 563-576. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:3(563) |
[17] |
董毓利. 不同应变率下混凝土受压全过程的实验研究及其本构模型[J]. 水利学报, 1997(7): 72-77. |
[18] |
Livermore Software Technology Corporation (2003) LS-DYNA Keyword User’s Manual V970. |
[19] |
Eibl, J. and Schmidt-Hurtienne, B. (1999) Strain-Rate-Sensitive Con-stitutive Law for Concrete. Journal of Engineering Mechanics, 125, 1411-1420. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:12(1411) |
[20] |
Burlion, N., Gatuingt, F. and Pijaudier-Cabot, G. (2000) Compaction and Tensile Damage in Concrete: Constitutive Modelling and Application to Dynamic. Computer Methods in Applied Mechanics and Engineering, 183, 291-308. https://doi.org/10.1016/S0045-7825(99)00223-6 |
[21] |
Liu, Y., Ma, A. and Huang, F. (2009) Numerical Simulations of Oblique-Angle Penetration by Deformable Projectiles into Concrete Targets. International Journal of Impact Engi-neering, 36, 438-446. https://doi.org/10.1016/j.ijimpeng.2008.03.006 |
[22] |
Leppänen, J. (2006) Concrete Subjected to Projectile and Fragment Impacts: Modelling of Crack Softening and Strain Rate Dependency in Tension. International Journal of Impact Engineering, 32, 1828-1841. https://doi.org/10.1016/j.ijimpeng.2005.06.005 |
[23] |
Polanco-Loria, M., Hopperstad, O.S., Børvik, T., et al. (2008) Numerical Predictions of Ballistic Limits for Concrete Slabs Using a Modified Version of the HJC Concrete Model. International Journal of Impact Engineering, 35, 290-303. https://doi.org/10.1016/j.ijimpeng.2007.03.001 |
[24] |
刘海峰, 宁建国. 强冲击荷载作用下混凝土材料动态本构模型[J]. 固体力学学报, 2008, 29(3): 231-238. |
[25] |
宁建国, 刘海峰, 商霖. 强冲击荷载作用下混凝土材料动态力学特性及本构模型[J]. 中国科学, 2008, 6(16): 759-772. |
[26] |
Perzyna, P. (1966) Fundamental Problems in Viscoplasticity. Advances in Applied Mechanics, 9, 244-368. https://doi.org/10.1016/S0065-2156(08)70009-7 |
[27] |
Tu, Z. and Lu, Y. (2010) Modifications of RHT Material Model for Improved Numerical Simulation of Dynamic Response of Concrete. International Journal of Impact Engi-neering, 37, 1072-1082. https://doi.org/10.1016/j.ijimpeng.2010.04.004 |
[28] |
Nyström, U. and Gylltoft, K. (2011) Comparative Numerical Studies of Projectile Impacts on Plain and Steel-Fibre Reinforced Concrete. International Journal of Impact Engineering, 38, 95-105. https://doi.org/10.1016/j.ijimpeng.2010.10.003 |
[29] |
Wu, J., Li, L., Du, X., et al. (2017) Numerical Study on the Asphalt Concrete Structure for Blast and Impact Load Using the Karagozian and Case Concrete Model. Applied Sciences, 7, 202-214. https://doi.org/10.3390/app7020202 |
[30] |
张社荣, 宋冉, 王超. 碾压混凝土HJC动态本构模型修正及数值验证[J]. 振动与冲击, 2019, 38(12): 25-31. |
[31] |
Izzuddin, B.A. and Fang, Q. (1997) Rate-Sensitive Analysis of Framed Structures Part I: Model Formulation and Verification. Structural Engineering & Mechanics, 5, 221-237. https://doi.org/10.12989/sem.1997.5.3.221 |
[32] |
黄海健. 轻质泡沫混凝土动态力学性能及本构关系[J]. 建筑材料学报, 2020, 23(2): 232-238. |
[33] |
Zhang, H., Wang, B., Xie, A., et al. (2017) Experimental Study on Dynamic Mechanical Properties and Constitutive Model of Basalt Fiber Reinforced Concrete. Construction and Building Materials, 152, 154-167. https://doi.org/10.1016/j.conbuildmat.2017.06.177 |
[34] |
尚仁杰. 混凝土动态本构行为研究[D]: [博士学位论文]. 大连: 大连理工大学, 1994. |
[35] |
郑永来, 夏颂佑. 岩石黏弹性连续损伤本构模型[J]. 岩石力学与工程学报, 1996(S1): 428-432. |
[36] |
陈江瑛. 水泥砂浆的率型本构方程[J]. 宁波大学学报, 2000, 27(2): 1-5. |
[37] |
胡时胜, 王道荣. 冲击载荷下混凝土材料的动态本构关系[J]. 爆炸与冲击, 2002, 22(3): 242-246. |
[38] |
商霖, 宁建国. 强冲击载荷下混凝土动态本构关系[J]. 工程力学, 2005, 22(2): 116-119. |
[39] |
单仁亮. 云驾岭煤矿无烟煤的动态本构模型研究[J]. 岩石力学与工程学报, 2006, 25(11): 2258-2263. |
[40] |
宁建国, 商霖, 孙远翔. 混凝土材料冲击特性的研究[J]. 力学学报, 2006, 38(2): 199-208. |
[41] |
孟益平. 冲击载荷作用下混凝土的率型本构关系[J]. 安徽理工大学学报, 2007, 27(4): 15-18. |
[42] |
翟越, 赵均海, 李寻昌. 岩石类材料损伤黏弹塑性动态本构模型研究[J]. 岩石力学与工程学报, 2011, 30(S2): 3820-3824. |
[43] |
谢理想. 软岩及混凝土材料损伤型黏弹性动态本构模型研究[J]. 岩石力学与工程学报, 2013, 32(1): 857-864. |
[44] |
Zhang, H., Liu, Y., Sun, H., et al. (2016) Transient Dynamic Be-havior of Polypropylene Fiber Reinforced Mortar under Compressive Impact Loading. Construction and Building Ma-terials, 111, 30-42. https://doi.org/10.1016/j.conbuildmat.2016.02.049 |
[45] |
Zhang, H., Wang, L., Zheng, K., et al. (2018) Research on Compressive Impact Dynamic Behavior and Constitutive Model of Polypropylene Fiber Reinforced Concrete. Con-struction and Building Materials, 187, 584-595. https://doi.org/10.1016/j.conbuildmat.2018.07.164 |
[46] |
张文清, 穆朝民. 突出煤的冲击力学行为及本构关系的研究[J]. 煤矿安全, 2016, 47(7): 1-4. |
[47] |
Dong, S., et al. (2018) Dynamic Impact Behaviors and Constitutive Model of Super-Fine Stainless Wire Reinforced Reactive Powder Concrete. Construction and Building Materials, 184, 602-616. https://doi.org/10.1016/j.conbuildmat.2018.07.027 |
[48] |
焦楚杰, 李习波, 程从密. 基于分形理论的高强混凝土动态损伤本构关系[J]. 爆炸与冲击, 2018, 38(4): 925-930. |
[49] |
付玉凯, 解北京, 王启飞. 煤的动态力学本构模型[J]. 煤炭学报, 2013, 38(10): 1769-1774. |
[50] |
解北京, 严正. 基于层叠模型组合煤岩体动态力学本构模型[J]. 煤炭学报, 2019, 44(2): 463-472. |
[51] |
Perzyna, P. (1963) The Constitutive Equations for Rate Sensitive Plastic Materials. Quarterly of Applied Mathematics, 20, 321-332. https://doi.org/10.1090/qam/144536 |
[52] |
Biani, N. and Zienkiewicz, O.C. (1983) Constitutive Model for Concrete under Dynamic Loading. Earthquake Engineering & Structural Dynamics, 11, 689-710. https://doi.org/10.1002/eqe.4290110508 |
[53] |
López Cela, J.J. (1998) Analysis of Reinforced Concrete Structures Subjected to Dynamic Loads with a Viscoplastic Drucker-Prager Model. Applied Mathematical Modelling, 22, 495-515. https://doi.org/10.1016/S0307-904X(98)10050-1 |
[54] |
Duvaut, G.L.J.L. (1976) Inequalities in Mechanics and Physics. Springer, Berlin. https://doi.org/10.1007/978-3-642-66165-5 |
[55] |
Kang, H.D. and Willam, K.J. (2000) Performance Evaluation of Elastoviscoplastic Concrete Model. Journal of Engineering Mechanics, 126, 995-1000. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:9(995) |
[56] |
Kang, H.D. and Willam, K.J. (1999) Localization Characteristics of Triaxial Concrete Model. Journal of Engineering Mechanics, 125, 941-950. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:8(941) |
[57] |
Chen, D., Al-Hassani, S.T.S., Yin, Z., et al. (2001) Modeling Shock Loading Behavior of Concrete. International Journal of Solids & Structures, 38, 8787-8803. https://doi.org/10.1016/S0020-7683(01)00102-0 |
[58] |
Winnicki, A., Pearce, C.J. and Bieanie, N. (2001) Visco-plastic Hoffman Consistency Model for Concrete. Computers & Structures, 79, 7-19. https://doi.org/10.1016/S0045-7949(00)00110-3 |
[59] |
Wang, W.M. (1997) Stationary and Propagative Instabilities in Metals. Delft University of Technology, Delft. |
[60] |
冯明珲, 吕和祥, 林皋. 黏弹塑性理论在混凝土变形中的应用[J]. 工程力学, 2002, 19(2): 3-8. |
[61] |
陈书宇. 动态载荷下的混凝土本构关系及有限元实现[J]. 辽宁工学院学报, 2003, 23(1): 5-7. |
[62] |
Georgin, J.F. and Reynouard, J.M. (2003) Modeling of Structures Subjected to Impact: Concrete Behaviour under High Strain Rate. Cement and Concrete Composites, 25, 131-143. https://doi.org/10.1016/S0958-9465(01)00060-9 |
[63] |
肖诗云, 林皋, 王哲. Drucker-Prager材料一致率型本构模型[J]. 工程力学, 2003, 20(4): 147-151. |
[64] |
肖诗云, 林皋, 李宏男. 混凝土WW三参数率相关动态本构模型[J]. 计算力学学报, 2004, 21(6): 641-646. |
[65] |
Pandey, A.K., Kumar, R., Paul, D.K., et al. (2006) Strain Rate Model for Dynamic Analysis of Reinforced Concrete Structures. Journal of Structural Engineering, 132, 1393-1401. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:9(1393) |
[66] |
褚卫江, 苏静波, 徐卫亚. 基于一致性理论的Drucker-Prager材料弹黏塑本构模型[J]. 岩土力学, 2008, 29(3): 811-816. |
[67] |
Aráoz, G. and Luccioni, B. (2015) Modeling Concrete like Materials under Sever Dynamic Pressures. International Journal of Impact Engineering, 76, 139-154. https://doi.org/10.1016/j.ijimpeng.2014.09.009 |
[68] |
李兆霞. 一个综合模糊裂纹和损伤的混凝土应变软化本构模型[J]. 固体力学学报, 1995, 16(1): 22-30. |
[69] |
Govindjee (1995) Anisotropic Modelling and Numerical Simulation of Brittle Damage in Concrete. International Journal for Numerical Methods in Engineering, 38, 3611-3633. https://doi.org/10.1002/nme.1620382105 |
[70] |
Ju, J.W. (1997) Discussion: Rate Dependent Damage Model for Concrete in Dynamics. Journal of Engineering Mechanics, 123, 1326-1328. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:12(1326) |
[71] |
Rossi, P. (1997) Strain Rate Effects in Con-crete Structures: The LCPC Experience. Materials and Structures, 30, 54-62. https://doi.org/10.1007/BF02539277 |
[72] |
陈书宇. 一种混凝土损伤模型和数值方法[J]. 爆炸与冲击, 1998, 18(4): 62-70. |
[73] |
Lee, J. and Fenves, G.L. (1998) A Plastic-Damage Concrete Model for Earthquake Analysis of Dams. Earthquake Engineering & Structural Dynamics, 27, 937-956. https://doi.org/10.1002/(SICI)1096-9845(199809)27:9<937::AID-EQE764>3.0.CO;2-5 |
[74] |
陆晓霞, 张培源. 在围压冲击条件下岩石损伤黏塑性本构关系[J]. 重庆大学学报(自然科学版), 2002, 25(1): 6-8. |
[75] |
Gatuingt, F. and Pijaudier, C.G. (2002) Coupled Damage and Plasticity Modelling in Transient Dynamic Analysis of Concrete. In-ternational Journal for Numerical and Analytical Methods in Geomechanics, 26, 1-24. https://doi.org/10.1002/nag.188 |
[76] |
Ragueneau, F. and Gatuingt, F. (2003) Inelastic Behavior Modelling of Concrete in Low and High Strain Rate Dynamics. Computers & Structures, 81, 1287-1299. https://doi.org/10.1016/S0045-7949(03)00043-9 |
[77] |
Ren, X. and Li, J. (2013) A Unified Dynamic Model for Concrete Considering Viscoplasticity and Rate-Dependent Damage. International Journal of Damage Mechanics, 22, 530-555. https://doi.org/10.1177/1056789512455968 |
[78] |
Marzec, I. and Tejchman, J. (2013) Computational Modelling of Concrete Behaviour under Static and Dynamic Conditions. Bulletin of the Polish Academy of Sciences: Technical Sciences, 61, 85-96. https://doi.org/10.2478/bpasts-2013-0007 |
[79] |
Ju, J.W. (1997) Discussion: Rate Dependent Damage Model for Concrete in Dynamics. Journal of Engineering Mechanics, 123, 1326-1328. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:12(1326) |
[80] |
Lindholm, U.S., Yeakley, L.M. and Nagy, A. (1974) The Dynamic Strength and Fracture Properties of Dresser Basalt. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 11, 181-191. https://doi.org/10.1016/0148-9062(74)90885-7 |
[81] |
Muxia, Z., Zuoteng, Y. and Chuanbei, R. (1977) On the Me-chanical Behaviour of Rocks under Impulsive Loading. Bulletin of the Faculty of Engineering, Hokkaido University, 3, 51-61. |
[82] |
于亚伦. 高应变率下的岩石本构方程[C]//岩石破碎理论与实践——全国第五届岩石破碎学术会论文选集. 岩石破碎理论与实践,1992: 40-44. |
[83] |
谢理想, 赵光明, 孟祥瑞. 岩石在冲击载荷下的过应力本构模型研究[J]. 岩石力学与工程学报, 2013, 32(S1): 2772-2781. |
[84] |
Liu, L. and Katsabanis, P.D. (1997) Development of a Continuum Damage Model for Blasting Analysis. International Journal of Rock Mechanics & Mining Sciences, 34, 217-231. https://doi.org/10.1016/S0148-9062(96)00041-1 |
[85] |
曹文贵. 岩石损伤软化统计本构模型之研究[J]. 岩石力学与工程学报, 1998, 17(6): 628-633. |
[86] |
东兆星, 单仁亮. 高应变率下岩石本构特性的研究[J]. 工程爆破, 1999, 5(2): 5-9. |
[87] |
徐卫亚, 韦立德. 岩石损伤统计本构模型的研究[J]. 岩石力学与工程学报, 2002, 21(6): 787-791. |
[88] |
单仁亮. 岩石动态破坏的时效损伤本构模型[J]. 岩石力学与工程学报, 2003, 22(11): 1771-1776. |
[89] |
李夕兵, 左宇军, 马春德. 中应变率下动静组合加载岩石的本构模型[J]. 岩石力学与工程学报, 2006, 25(5): 865-874. |
[90] |
杨明辉, 赵明华, 曹文贵. 基于统计理论的岩石动态损伤本构模型研究[J]. 武汉理工大学学报, 2007, 29(4): 95-98. |
[91] |
刘军忠, 许金余, 吕晓聪. 围压下岩石的冲击力学行为及动态统计损伤本构模型研究[J]. 工程力学, 2012, 29(1): 55-63. |
[92] |
曹文贵, 林星涛, 张超. 基于非线性动态强度准则的岩石动态变形过程统计损伤模拟方法[J]. 岩石力学与工程学报, 2017, 36(4): 794-802. |
[93] |
王恩元, 孔祥国, 何学秋. 冲击载荷下三轴煤体动力学分析及损伤本构方程[J]. 煤炭学报, 2019, 44(7): 2049-2056. |