[1] |
Semenza, G.L. (2004) Hydroxylation of HIF-1: Oxygen Sensing at the Molecular Level. Physiology (Bethesda), 19, 176-182. https://doi.org/10.1152/physiol.00001.2004 |
[2] |
Wolfle, D., Schmidt, H. and Jungermann, K. (1983) Short-Term Modulation of Glycogen Metabolism, Glycolysis and Gluconeogenesis by Physiological Oxygen Concentra-tions in Hepatocyte Cultures. European Journal of Biochemistry, 135, 405-412. https://doi.org/10.1111/j.1432-1033.1983.tb07667.x |
[3] |
Wang, G.L. and Semenza, G.L. (1993) General Involve-ment of Hypoxia-Inducible Factor 1 in Transcriptional Response to Hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 90, 4304-4308. https://doi.org/10.1073/pnas.90.9.4304 |
[4] |
Lee, J.W., Bae, S.H., Jeong, J.W., et al. (2004) Hypoxia-Inducible Factor (HIF-1) α: Its Protein Stability and Biological Functions. Experimental and Molecular Medicine, 36, 1-12. https://doi.org/10.1038/emm.2004.1 |
[5] |
Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J.M., Lane, W.S. and Kaelin, W.G. (2001) HIFalpha Targeted for VHL-Mediated Destruction by Proline Hy-droxylation: Implications for O2 Sensing. Science, 292, 464-468. https://doi.org/10.1126/science.1059817 |
[6] |
Epstein, A.C., Gleadle, J.M., McNeill, L.A., Hewitson, K.S., O’Rourke, J., Mole, D.R., Mukherji, M., Metzen, E., Wilson, M.I., Dhanda, A., et al. (2001) C. elegans EGL-9 and Mammalian Homologs Define a Family of Dioxygenases that Regulate HIF by Prolyl Hydroxylation. Cell, 107, 43-54. https://doi.org/10.1016/S0092-8674(01)00507-4 |
[7] |
Semenza, G.L. (2003) Targeting HIF-1 for Cancer Therapy. Nature Reviews Cancer, 3, 721-732. https://doi.org/10.1038/nrc1187 |
[8] |
Jelkmann, W. (1992) Erythropoietin: Structure, Control of Production and Function. Physiological Reviews, 72, 449-489. https://doi.org/10.1152/physrev.1992.72.2.449 |
[9] |
White, F.C., Carroll, S.M., Magnet, A. and Bloor, C.M. (1992) Exercise Induced Coronary Collateral Development: A Comparison to Other Models of Myocardial Angiogenesis. Cir-culation Research, 71, 1490-1500. https://doi.org/10.1007/978-1-4615-3092-3_13 |
[10] |
Taylor, L. and Curthoys, N.P. (2004) Glutamine Metabolism: Role in Acid-Base Balance. Biochemistry and Molecular Biology Education, 32, 291-304. https://doi.org/10.1002/bmb.2004.494032050388 |
[11] |
DeBerardinis, R.J., Mancuso, A., Daikhin, E., et al. (2007) Beyond Aerobic Glycolysis: Transformed Cells Can Engage in Glutamine Metabolism That Exceeds the Requirement for Protein and Nucleotide Synthesis. Proceedings of the National Academy of Sciences of the United States of America, 104, 19345-19350. https://doi.org/10.1073/pnas.0709747104 |
[12] |
Feron, O. (2009) Pyruvate into Lactate and Back: From the Warburg Effect to Symbiotic Energy Fuel Exchange in Cancer Cells. Radiotherapy and Oncology, 92, 329-333. https://doi.org/10.1016/j.radonc.2009.06.025 |
[13] |
Dang, C.V. (2010) Glutaminolysis: Supplying Carbon or Nitro-gen or Both for Cancer Cells? Cell Cycle, 9, 3884-3886. https://doi.org/10.4161/cc.9.19.13302 |
[14] |
Dang, C.V. (2010) Rethinking the Warburg Effect with Myc Mi-cromanaging Glutamine Metabolism. Cancer Research, 70, 859-862. https://doi.org/10.1158/0008-5472.CAN-09-3556 |
[15] |
Wise, D.R. and Thompson, C.B. (2010) Glutamine Addic-tion: A New Therapeutic Target in Cancer. Trends in Biochemical Sciences, 35, 427-433. https://doi.org/10.1016/j.tibs.2010.05.003 |
[16] |
Bhutia, Y.D., Babu, E., Ramachandran, S. and Ganapathy, V. (2015) Amino acid Transporters in Cancer and Their Relevance to Glutamine Addiction: Novel Targets for the Design of a New Class of Anticancer Drugs. Cancer Research, 75, 1782-1788. https://doi.org/10.1158/0008-5472.CAN-14-3745 |
[17] |
Nicklin, P., et al. (2009) Bidirectional Transport of Amino Acids Regulates mTOR and Autophagy. Cell, 136, 521-534. https://doi.org/10.1016/j.cell.2008.11.044 |
[18] |
Kamphorst, J.J., et al. (2015) Human Pancreatic Cancer Tumors Are Nutrient Poor and Tumor Cells Actively Scavenge Extracellular Protein. Cancer Research, 75, 544-553. https://doi.org/10.1158/0008-5472.CAN-14-2211 |
[19] |
Commisso, C., et al. (2013) Macropinocytosis of Protein Is an Amino Acid Supply Route in Ras-Transformed Cells. Nature, 497, 633-637. https://doi.org/10.1038/nature12138 |
[20] |
Lane, A.N. and Fan, T.W. (2015) Regulation of Mammalian Nucleotide Metabolism and Biosynthesis. Nucleic Acids Research, 43, 2466-2485. https://doi.org/10.1093/nar/gkv047 |
[21] |
GHolleran, A.L., Briscoe, D.A., Fiskum, G. and Kelleher, J.K. (1995) Glutamine Metabolism in AS-30D Hepatoma Cells. Evidence for Its Conversion into Lipids via Reductive Carboxylation. Molecular and Cellular Biochemistry, 152, 95-101. https://doi.org/10.1007/BF01076071 |
[22] |
Gameiro, P.A., Laviolette, L.A., Kelleher, J.K., Iliopoulos, O. and Stephanopoulos, G. (2013) Cofactor Balance by Nicotinamide Nucleo-tide Transhydrogenase (NNT) Coordinates Reductive Carboxylation and Glucose Catabolism in the Tricarboxylic Acid (TCA) Cycle. Journal of Biological Chemistry, 288, 12967-12977. https://doi.org/10.1074/jbc.M112.396796 |
[23] |
Metallo, C.M., Gameiro, P.A., Bell, E.L., Mattaini, K.R., Yang, J., Hiller, K., Jewell, C.M., Johnson, Z.R., Irvine, D.J., Guarente, L., et al. (2012) Reductive Glutamine Metabolism by IDH1 Mediates Lipogenesis under Hypoxia. Nature, 481, 380-384. https://doi.org/10.1038/nature10602 |
[24] |
Moreadith, R.W. and Lehninger, A.L. (1984) The Pathways of Glutamate and Glutamine Oxidation by Tumor Cell Mitochondria. Role of Mitochondrial NAD(P)+-Dependent Malic Enzyme. Journal of Biological Chemistry, 259, 6215-6221. https://doi.org/10.1016/S0021-9258(20)82128-0 |
[25] |
Alberghina, L. and Gaglio, D. (2014) Redox Control of Glu-tamine Utilization in Cancer. Cell Death & Disease, 5, e1561. https://doi.org/10.1038/cddis.2014.513 |
[26] |
Wroblewski, F. and Ladue, J.S. (1956) Serum Glutamic Pyruvic Transaminase in Cardiac with Hepatic Disease. Proceedings of the Society for Experimental Biology and Medicine, 91, 569-571. https://doi.org/10.3181/00379727-91-22330 |
[27] |
Altman, B.J., Stine, Z.E. and Dang, C.V. (2016) From Krebs to Clinic: Glutamine Metabolism to Cancer Therapy. Nature Reviews Cancer, 16, 619-634. https://doi.org/10.1038/nrc.2016.71 |
[28] |
Gaglio, D., Soldati, C., Vanoni, M., Alberghina, L. and Chiaradonna, F. (2009) Glutamine Deprivation Induces Abortive S Phase Rescued by Deoxyribonucleotides in K-Ras Transformed Fi-broblasts. PLoS ONE, 4, e4715. https://doi.org/10.1371/journal.pone.0004715 |
[29] |
Sellers, K., et al. (2015) Pyruvate Carboxylase Is Critical for Non-Small-Cell Lung Cancer Proliferation. The Journal of Clinical Investigation, 125, 687-698. https://doi.org/10.1172/JCI72873 |
[30] |
Zhang, Y., Ren, Y.-J., Guo, L.-C., Ji, C., Hu, J., Zhang, H.-H., Xu, Q.-H., Zhu,W.-D., Ming, Z.-J., Yuan, Y.-S., et al. (2017) Nucleus Accumbens-Associated Protein-1 Promotes Glycolysis and Survival of Hypoxic Tumor Cells via the HDAC4-HIF-1 Axis. Oncogene, 36, 4171-4181. https://doi.org/10.1038/onc.2017.51 |
[31] |
Warburg, O. (1956) On Respiratory Impairment in Cancer Cells. Science, 124, 269-270. https://doi.org/10.1126/science.124.3215.267 |
[32] |
Gameiro, P.A., Yang, J., Metelo, A.M., Perez-Carro, R., Baker, R., Wang, Z., Arreola, A., Rathmell, W.K., Olumi, A., Lopez-Larrubia, P., et al. (2013) In Vivo HIF-Mediated Reductive Carboxylation Is Regulated by Citrate Levels and Sensitizes VHL-Deficient Cells to Glutamine Deprivation. Cell Metab-olism, 17, 372-385. https://doi.org/10.1016/j.cmet.2013.02.002 |
[33] |
Le, A., Lane, A.N., Hamaker, M., Bose, S., Gouw, A., et al. (2012) Glucose-Independent Glutamine Metabolism via TCA Cycling for Proliferation and Survival in B Cells. Cell Metabolism, 15, 110-121. https://doi.org/10.1016/j.cmet.2011.12.009 |
[34] |
Wise, D.R., Ward, P.S., Shay, J.E.S., et al. (2011) Hypoxia Pro-motes Isocitrate Dehydrogenase-Dependent Carboxylation of α-Ketoglutarate to Citrate to Support Cell Growth and Via-bility. Proceedings of the National Academy of Sciences, 108, 19611-19616. https://doi.org/10.1073/pnas.1117773108 |
[35] |
Sun, R.C. and Denko, N.C. (2014) Hypoxic Regulation of Gluta-mine Metabolism through HIF1 and SIAH2 Supports Lipid Synthesis That Is Necessary for Tumor Growth. Cell Me-tabolism, 19, 285-292. https://doi.org/10.1016/j.cmet.2013.11.022 |
[36] |
Gao, P., et al. (2009) c-Myc Suppression of miR-23a/b Enhances Mitochondrial Glutaminase Expression and Glutamine Metabolism. Nature, 458, 762-765. https://doi.org/10.1038/nature07823 |
[37] |
Wang, Y., Bai, C., Ruan, Y., et al. (2019) Coordinative Metabolism of Glutamine Carbon and Nitrogen in Proliferating Cancer Cells under Hypoxia. Nature Communications, 10, 201. https://doi.org/10.1038/s41467-018-08033-9 |
[38] |
Perez-Escuredo, J., Dadhich, R.K., Dhup, S., Cacace, A., van Hee, V.F., de Saedeleer, C.J., Sboarina, M., Rodriguez, F., Fontenille, M.-J., Brisson, L., et al. (2016) Lactate Promotes Glutamine Uptake and Metabolism in Oxidative Cancer Cells. Cell Cycle (Georgetown, Tex.), 15, 72-83. https://doi.org/10.1080/15384101.2015.1120930 |
[39] |
Tapper, E.B., Jiang, Z.G. and Patwardhan, V.R. (2015) Re-fining the Ammonia Hypothesis: A Physiology-Driven Approach to the Treatment of Hepatic Encephalopathy. Mayo Clinic Proceedings, 90, 646-658. https://doi.org/10.1016/j.mayocp.2015.03.003 |
[40] |
Kappler, M., Pabst, U., Rot, S., Taubert, H., Wichmann, H., Schubert, J., Bache, M., Weinholdt, C., Immel, U.-D., Grosse, I., et al. (2017) Normoxic Accumulation of HIF1alpha Is Associated with Glutaminolysis. Clinical Oral Investigations, 21, 211-224. https://doi.org/10.1007/s00784-016-1780-9 |
[41] |
Patel, M.S. and Harris, R.A. (1995) Mammalian Alpha-Keto Acid Dehydrogenase Complexes: Gene Regulation and Genetic Defects. The FASEB Journal, 9, 1164-1172. https://doi.org/10.1096/fasebj.9.12.7672509 |
[42] |
Jiang, Z.-F., et al. (2017) Hypoxia Promotes Mitochondrial Glu-tamine Metabolism through HIF1a-GDH Pathway Inhuman Lung Cancer Cells. Biochemical and Biophysical Research Communications, 483, 32-38. https://doi.org/10.1016/j.bbrc.2017.01.015 |