[1] |
吴雪贞. 环氧树脂固化工艺及其固化剂研究[J]. 中国石油和化工标准与质量, 2017, 37(7): 127-128. |
[2] |
胡曌玺, 喻长远, 陈禹保, 等. 交叉科学研究进展——胡文祥交叉科学相关研究部分论文[M]. 武汉: beplay体育官网网页版等您来挑战! , 2020. |
[3] |
陈名华, 姚武文, 王新坤, 等. 微波固化碳纤维/环氧树脂胶的研究[J]. 粘接, 2005, 26(6): 13-15. |
[4] |
郝静远, 王存文, 胡文祥. 书评: 《微波化学》[J]. 微波化学, 2019, 3(2): 15-27. |
[5] |
金钦汉, 戴树珊, 黄卡玛. 微波化学[M]. 北京: 科学出版社, 1999. |
[6] |
张寒琦, 金钦汉. 微波化学[J]. 大学化学, 2001, 16(2): 32-36. |
[7] |
秦宁, 闵清, 阮新志, 等. 书评: 《微波化学研究进展——京东祥鹄微波化学联合实验室微波化学领域相关研究成果目录及部分论文集》[J]. 微波化学, 2019, 3(3): 29-35. |
[8] |
胡曌玺, 王存文, 闵清, 等. 微波化学研究进展——京东祥鹄微波化学联合实验室微波化学领域相关研究成果目录及部分论文集[M]. 武汉: beplay体育官网网页版等您来挑战! , 2019. |
[9] |
丁全青. 芴基环氧树脂的固化机制及性能研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工程大学, 2011. |
[10] |
武文硕. 微波液化玉米秸秆及环氧树脂的制备与性能研究[D]: [硕士学位论文]. 保定: 河北大学, 2015. |
[11] |
Moraa, A.-S., Tayouob, R., Boutevina, B., et al. (2019) Synthesis of Biobased Reactive Hydroxyl Amines by Amination Reaction of Cardanol-Based Epoxy Monomers. European Polymer Journal, 118, 429-436. ://doi.org/10.1016/j.eurpolymj.2019.06.020 |
[12] |
张翠红, 陈志敏, 李松栋, 等. 微波法合成环氧树脂低温固化剂及其性能研究[J]. 热固性树脂,2020, 35(1): 7-11. |
[13] |
张翠红, 陈志敏, 李松栋. 环氧树脂低温固化剂的制备及性能研究[J]. 热固性树脂, 2016, 31(4): 25-27, 36. |
[14] |
Zhang, H.F., Zhu, F.F., Xu, Y., et al. (2017) Microwave-Assisted NaHSO4-Catalyzed Synthesis of Ricinoleic Glycol Ether Esters. Synthetic Communications, 47, 486-495. ://doi.org/10.1080/00397911.2016.1268695 |
[15] |
EhiImoisili, P., Ukoba, K. and Jen, T.-C. (2020) Physical, Mechanical and Thermal Properties of High Frequency Microwave Treated Plantain (Musa paradisiaca) Fibre/MWCNT Hybrid Epoxy Nanocomposites. Journal of Materials Research and Technology, 9, 4933-4939. ://doi.org/10.1016/j.jmrt.2020.03.012 |
[16] |
Liu, X., Luo, J.T., Fan, J.F., et al. (2019) Comprehensive Enhancement in Overall Properties of MWCNTs-COOH/Epoxy Composites by Microwave: An Efficient Approach to Strengthen Interfacial Bonding via Localized Superheating Effect. Composites Part B: Engineering, 174, Article ID: 106909. ://doi.org/10.1016/j.compositesb.2019.106909 |
[17] |
Zhang, C., Liu, L.S., Xu, Z.W., et al. (2018) Improvement for Interface Adhesion of Epoxy/Carbon Fibers Endowed with Carbon Nanotubes via Microwave Plasma-Enhanced Chemical Vapor Deposition. Polymer Composites, 39, E1262-E1268. ://doi.org/10.1002/pc.24843 |
[18] |
Moaseri, E., Behnaz, B., Majid, K., et al. (2019) Mechanical Improvements of Multi-Walled Carbon Nanotube-Epoxy Composite: Covalent Functionalization of Multi-Walled Carbon Nanotube by Epoxy Chains. Polymer Science, Series B, 61, 341-348. ://doi.org/10.1134/S1560090419030072 |
[19] |
OdomMorgan, G.B., Sweeney, C.B., et al. (2017) Rapid Curing and Additive Manufacturing of Thermoset Systems Using Scanning Microwave Heating of Carbon Nanotube/Epoxy Composites. Carbon, 120, 447-453. ://doi.org/10.1016/j.carbon.2017.05.063 |
[20] |
Marciano, S.J., Avelino, F., da Silv, L.R.R., et al. (2020) Microwave-Assisted Phosphorylation of Organosolv Lignin: New Bio-Additives for Improvement of Epoxy Resins Performance. Biomass Conversion and Biorefinery. ://doi.org/10.1007/s13399-020-01048-7 |
[21] |
Carlo, B., Martina, R., Renato, B., et al. (2020) Investigation of Plasma-Assisted Functionalization of Graphitic Materials for Epoxy Composites. Nanomaterials, 10, 78. ://doi.org/10.3390/nano10010078 |
[22] |
Yuan, J.-M., Fan, Z.-F., Yang, Q.-C., et al. (2018) Surface Modification of Carbon Fibers by Microwave Etching for Epoxy Resin Composite. Composites Science and Technology, 164, 222-228. ://doi.org/10.1016/j.compscitech.2018.05.043 |
[23] |
Khaledeh, M., Aziz, A., et al. (2020) Amine-Functionalized TiO2 Nanoparticles Covalently Loaded into Epoxy Networks via Thermal and Microwave Curing Processes. Macromolecular Research, 28, 567-572. ://doi.org/10.1007/s13233-020-8067-3 |
[24] |
Bekeshev, A., Mostovoy, A., et al. (2020) Reinforcement of Epoxy Composites with Application of Finely-Ground Ochre and Electrophysical Method of the Composition Modification. Polymers, 12, 1437. ://doi.org/10.3390/polym12071437 |
[25] |
蔡晓霞. 微波作用下双酚A型环氧树脂固化行为的研究[D]: [硕士学位论文]. 北京: 北京化工大学, 2004. |
[26] |
Sébastien, G., Philippe, T. and Maëlenn, A. (2018) Fast Polymerization at Low Temperature of an Infrared Radiation Cured Epoxy-Amine Adhesive. Thermochimica Acta, 666, 27-35. ://doi.org/10.1016/j.tca.2018.05.018 |
[27] |
孙涛, 常新龙, 赖建伟, 等. 不同固化方式下环氧树脂体系固化行为及力学性能研究[J]. 固体火箭技术, 2012, 35(5): 679-682+687. |
[28] |
谷晓昱, 张军营. 微波固化环氧树脂中非热效应的研究[J]. 高分子材料科学与工程, 2006, 22(3): 183-186. |
[29] |
张远方, 刘学清, 刘继延. 微波固化环氧树脂/氨基二苯醚树脂的耐热性能研究[J]. 中国塑料, 2015, 19(1): 18-21. |
[30] |
耿杰, 李勇, 陈云雷, 等. 环氧树脂聚酰胺体系微波固化特性研究[J]. 玻璃钢/复合材料, 2013(5): 7-13. |
[31] |
孙晓峰, 马世宁, 朱乃姝, 等. 环氧树脂胶粘剂微波固化研究[J]. 中国工程机械学报, 2010, 8(1): 107-110. |
[32] |
Pala, R., Akhtara, M.J. and Kara, K.K. (2018) Study on Dielectric Properties of Synthesized Exfoliated Graphite Reinforced Epoxy Composites for Microwave Processing. Polymer Testing, 70, 8-17. ://doi.org/10.1016/j.polymertesting.2018.06.011 |
[33] |
Deng, H.Y., Yuan, L., Gu, A.J., et al. (2020) Facile Strategy and Mechanism of Greatly Toughening Epoxy Resin Using Polyethersulfone through Controlling Phase Separation with Microwave-Assisted Thermal Curing Technique. Journal of Applied Polymer Science, 137, 48394. ://doi.org/10.1002/app.48394 |
[34] |
郑伟峰, 周来水, 袁铁军, 等. 颗粒Al2O3增强环氧树脂复合材料的微波固化动力学及性能[J]. 高分子材料科学与工程, 2017, 33(10): 65-71. |
[35] |
Bhudolia, S.K., Gohel, G., Joshi, S.C., et al. (2020) Vibration Damping and Dynamic Mechanical Attributes of Core-Shell Particles Modified Glass Epoxy Prepregs Cured Using Microwave Irradiations. Composites Communications, 21, Article ID: 100412. ://doi.org/10.1016/j.coco.2020.100412 |
[36] |
常新龙, 马仁利, 张晓军, 等. 微波固化玻璃纤维缠绕复合材料试验研究[J]. 固体火箭技术, 2016, 39(6): 806-814. |
[37] |
Rajeshwar, B.K., Jang, I. and Yi, C.K. (2019) Effect of Microwave on Mechanical Properties of Epoxy Mortar. Construction and Building Materials, 218, 681-688. ://doi.org/10.1016/j.conbuildmat.2019.05.155 |
[38] |
Zhang, X., Wang, X.Q., Xu, X.H., et al. (2017) Microwave Curing Process and Mechanical Properties Study of Epoxy Mortars for Repairing Concrete Pavement Rapidly. Journal of Reinforced Plastics and Composites, 36, 443-451. ://doi.org/10.1177/0731684416683026 |
[39] |
欧忠文, 白敏, 陈云, 等. 纳米银对环氧树脂的增韧改性及其微波固化行为[J]. 稀有金属材料与工程, 2012, 41(4): 649-652. |
[40] |
Ranu, P., Abhishek, K., Akhtar, M.J., et al. (2017) Enhanced Microwave Processing of Epoxy Nanocomposites Using Carbon Black Powders. Advanced Powder Technology, 28, 1281-1290. ://doi.org/10.1016/j.apt.2017.02.016 |
[41] |
陈云雷, 李勇, 耿杰, 等. 石墨对E-51环氧树脂体系微波固化速率的影响[J]. 航空学报, 2013, 34(12): 2833-2840. |
[42] |
Cai, C.T., Zhang, Y., Zou, X.T., et al. (2017) Rapid Self-Healing and Recycling of Multiple-Responsive Mechanically Enhanced Epoxy Resin/Graphene Nanocomposites. RSC Advances, 7, 46336-46343. ://doi.org/10.1039/C7RA09258J |
[43] |
Ranu, P., Akhtar, M.J. and KarKamal, K. (2018) Microwave-Assisted Curing of Silicon Carbide-Reinforced Epoxy Composites: Role of Dielectric Properties. JOM, 70, 1295-1301. ://doi.org/10.1007/s11837-018-2855-7 |
[44] |
刘学清, 王源升. 微波固化环氧树脂/SiO2复合材料及其性能的研究[J]. 热固性树脂, 2003, 18(2): 8-11. |
[45] |
Liu, X.Y., He, Y.N., Qiu, D.C., et al. (2019) Numerical Optimizing and Experimental Evaluation of Stepwise Rapid High-Pressure Microwave Curing Carbon Fiber/Epoxy Composite Repair Patch. Composite Structures, 230, Article ID: 111529. ://doi.org/10.1016/j.compstruct.2019.111529 |
[46] |
Li, N.Y., Li, Y.G., et al. (2017) A New Process Control Method for Microwave Curing of Carbon Fibre Reinforced Composites in Aerospace Applications. Composites Part B: Engineering, 122, 61-70. ://doi.org/10.1016/j.compositesb.2017.04.009 |
[47] |
李自强, 湛利华, 常腾飞, 等. 基于微波固化工艺的碳纤维T800/环氧树脂复合材料固化反应动力学[J]. 复合材料学报, 2018, 35(9): 2458-2464. |
[48] |
张青, 常新龙, 张有宏, 等. 碳纤维/环氧树脂复合材料微波固化试验[J]. 宇航材料工艺, 2018, 48(6): 58-62. |
[49] |
何栋, 唐婷. 基于微波固化技术的碳纤维/环氧树脂复合材料试验[J]. 粘接, 2019, 40(11): 67-70. |
[50] |
文友谊, 文琼华, 李帆, 等. 碳纤维增强树脂基复合材料微波固化技术[J]. 航空制造技术, 2015, 58(s1): 61-64. |
[51] |
Park, E.-T., Lee, Y., Kim, J., et al. (2019) Experimental Study on Microwave-Based Curing Process with Thermal Expansion Pressure of PTFE for Manufacturing Carbon Fiber/Epoxy Composites. Materials, 12, 3737. ://doi.org/10.3390/ma12223737 |
[52] |
Zhang, L.L., Li, Y.G. and Zhou, J. (2018) Anisotropic Dielectric Properties of Carbon Fiber Reinforced Polymer Composites during Microwave Curing. Applied Composite Materials, 25, 1339-1356. ://doi.org/10.1007/s10443-017-9669-6 |
[53] |
Chen, X.P., Zhan, L.H., Pu, Y.W., et al. (2018) Effect of Cure Pressure on Microstructure and Interlaminar Shear Strength Properties of Carbon Fiber-Reinforced Plastics with Microwave Curing. High Performance Polymers, 30, 1084-1093. ://doi.org/10.1177/0954008317739679 |
[54] |
Colangelo, R., et al. (2017) Epoxy/Glass Fibres Composites for Civil Applications: Comparison between Thermal and Microwave Crosslinking Routes. Composites Part B: Engineering, 126, 100-107. ://doi.org/10.1016/j.compositesb.2017.06.003 |
[55] |
刘文博, 常秋英, 张浩, 等. 固化方式对粘结固体润滑涂层摩擦学性能的影响[J]. 空间控制技术与应用, 2020, 46(4): 64-71. |
[56] |
龙祥, 卢雪峰, 钱坤. 固化方式对三维浅交弯联机织复合材料弯曲性能的影响[J]. 材料科学与工程学报, 2017, 35(1): 125-128. |
[57] |
钟发春, 贺江平, 王晓川, 等. 微波固化环氧泡沫材料的结构和性能研究[J]. 材料导报, 2006, 20(8): 149-151. |
[58] |
王强华. 微波辅助固化用于树脂传递模塑[J]. 玻璃钢, 2013, 12(2): 47-49, 40. |
[59] |
Xi, J.J. and Yu, Z.Q. (2017) Toughening Mechanism of Rubber Reinforced Epoxy Composites by Thermal and Microwave Curing. Journal of Applied Polymer Science, 135, 45767. ://doi.org/10.1002/app.45767 |
[60] |
耿杰. 环氧树脂及其复合材料微波固化工艺研究[D]: [硕士学位论文]. 南京: 南京航空航天大学, 2013. |
[61] |
Rajeshwar, B.K., Yemam, D.M., Jang, I., et al. (2020) The Effects of Sand Washing Waste and Microwave Curing on the Dimensional Stability of Epoxy Mortar. Construction and Building Materials, 250, Article ID: 118892. ://doi.org/10.1016/j.conbuildmat.2020.118892 |
[62] |
胡红兵. 环氧基CCL废料应用的探讨[J]. 覆铜板资讯, 2007(4): 30. |
[63] |
Zhao, X., Wang, X.-L., Tian, F., et al. (2019) A Fast and Mild Closed-Loop Recycling of Anhydride-Cured Epoxy through Microwave Assisted Catalytic Degradation by Trifunctional Amine and Subsequent Reuse without Separation. Green Chemistry, 21, 2487-2493. ://doi.org/10.1039/C9GC00685K |
[64] |
Deng, J.Y., Xu, L., Zhang, L.B., et al. (2019) Recycling of Carbon Fibers from CFRP Waste by Microwave Thermolysis. Processes, 7, 207. ://doi.org/10.3390/pr7040207 |
[65] |
Tominaga, Y., Shimamoto, D. and Hotta, Y. (2018) Curing Effects on Interfacial Adhesion between Recycled Carbon Fiber and Epoxy Resin Heated by Microwave Irradiation. Materials, 11, 493. ://doi.org/10.3390/ma11040493 |
[66] |
Tian, F., Yang, Y., Wang, X.L., et al. (2019) From Waste Epoxy Resins to Efficient Oil/Water Separation Materials via Microwave Assisted Pore-Forming Strategy. Materials Horizons, 6, 1733-1739. ://doi.org/10.1039/C9MH00541B |
[67] |
Li, Y.G., Cheng, L.B. and Zhou, J. (2018) Curing Multidirectional Carbon Fiber Reinforced Polymer Composites with Indirect Microwave Heating. The International Journal of Advanced Manufacturing Technology, 97, 1137-1147. ://doi.org/10.1007/s00170-018-1974-1 |
[68] |
Hubbard, R.L., Tyler, D.R. and Thompson, B. (2021) An Empirically Derived Model for Further Increasing Microwave Curing Rates of Epoxy-Amine Polymerizations. Journal of Applied Polymer Science, 138, e49635. ://doi.org/10.1002/app.49635 |
[69] |
张翔, 常新龙, 张有宏, 等. 先进树脂基复合材料微波固化过程数值模拟[J]. 空军工程大学学报(自然科学版), 2019, 20(2): 105-111. |
[70] |
李耶斯豆阿吉, 杜维唯, 姜山, 等. 利用微波能量均匀加热减少气泡的环氧树脂成型方法[P]. 中国, 201310392311.2. 2013-12-25. |
[71] |
雷运波, 曹雪娟, 谢拂伊. 环氧树脂微波固化情况检测方法及装置[P]. 中国专利, 101975791A. 2011-02-16. |
[72] |
He, Y.X., Li, Y.G., Li, N.Y., et al. (2018) Online Monitoring Method of Degree of Cure during Non-Isothermal Microwave Curing Process. Materials Research Express, 5, Article ID: 025306. ://doi.org/10.1088/2053-1591/aaad33 |
[73] |
徐学宏, 王小群, 闫超, 等. 环氧树脂及其复合材料微波固化研究进展[J]. 材料工程, 2016, 44(8): 111-120. |
[74] |
Chinedum, O.M., Li, D.N., Lin, M.-F., et al. (2018) Accelerated Microwave Curing of Fibre-Reinforced Thermoset Polymer Composites for Structural Applications: A Review of Scientific Challenges. Composites Part A, 115, 88-103. ://doi.org/10.1016/j.compositesa.2018.09.012 |
[75] |
Wu, Y., Xie, T., Xiao, W., et al. (2018) A Novel Microwave Combined Ultraviolet Radiator Based on Slotted Coaxial Line for Epoxy Resin Curing. AIP Advances, 8, Article ID: 115021. ://doi.org/10.1063/1.5048530 |
[76] |
Felice, R., Vitantonio, E., Tucci, et al. (2020) Flow Enhancement in Liquid Composite Molding Processes by Online Microwave Resin Preheating. Polymer Engineering & Science, 60, 2377-2389. ://doi.org/10.1002/pen.25477 |
[77] |
胡文祥, 袁承业. 微波、超声波催化有机磷酸酯水解反应[R]. 研究生Seminar报告, 中国科学院上海有机所, 1985. |
[78] |
胡文祥, 恽榴红. 微波催化在有机和药物化学中的应用研究[R]. 军事医学科学院药化专业年会报告, 北京, 1989. |
[79] |
胡文祥, 恽榴红. 物理催化在有机药物化学中的应用研究[R]. 第十一届全军药学专业委员会学术报告, 北京, 1992. |
[80] |
胡文祥, 恽榴红. 超声波技术在有机药物化学中的应用[J]. 中国药物化学杂志, 1993, 3(1): 76-78. |
[81] |
胡文祥. 比较学与比较化学导论[J]. 科学(Scientific American中文版), 1994(7): 1-7. |
[82] |
陆模文, 胡文祥, 恽榴红. 有机微波化学研究进展[J]. 有机化学, 1995, 15(6): 561-566. |
[83] |
胡文祥, 恽榴红. 超声波、微波和酶催化在有机药物合成中的某些应用[J]. 军事医学科学院院刊, 1995, 19(4): 253. |
[84] |
胡文祥, 袁承业. 烷基膦酸单酯的合成[J]. 化学学报, 1996, 54(1): 77-83. |
[85] |
胡文祥, 恽榴红. 有机药物合成化学中生物、化学和物理催化方法[J]. 科技通报, 1996, 12(5): 320. |
[86] |
胡文祥. 《微波化学》创刊词——唯有微波可壮志敢教化学换新天[J]. 微波化学, 2017, 1(1): 1-2. |
[87] |
胡文祥, 恽榴红, 曹惠生, 等. 新型微波反应器[P]. 中国, ZL97201861.1. 1998-06-17. |
[88] |
Hu, W.X. and Peng, Q.T. (2000) Rapid Synthesis of Tetraphenylporphyrin with Microwave Irradiation. Chemical Journal on Internet, 2, 54-55. |
[89] |
Hu, W.X. and Wang, J.Y. (2001) Combinatorial Catalysis with Physical, Chemical and Biological Methodologies. Chemical Journal on Internet, 3, 44-46. |
[90] |
Liu, M. and Hu, W.X. (2013) Recent Progress of Microwave Irradiation in Synthesis and Diagnosis Treatment. Advanced Material Research, 616-618, 1711-1716. ://doi.org/10.4028/www.scientific.net/AMR.616-618.1711 |
[91] |
Han, X., Shao, K.Y. and Hu, W.X. (2018) Synthesis of 9-Substituted Berberine Derivatives with Microwave Irradiation. Chemical Research in Chinese University, 34, 571-577. ://doi.org/10.1007/s40242-018-7425-6 |
[92] |
吴雪贞. 环氧树脂固化工艺及其固化剂研究[J]. 中国石油和化工标准与质量, 2017, 37(7): 127-128. |
[93] |
胡曌玺, 喻长远, 陈禹保, 等. 交叉科学研究进展——胡文祥交叉科学相关研究部分论文[M]. 武汉: beplay体育官网网页版等您来挑战! , 2020. |
[94] |
陈名华, 姚武文, 王新坤, 等. 微波固化碳纤维/环氧树脂胶的研究[J]. 粘接, 2005, 26(6): 13-15. |
[95] |
郝静远, 王存文, 胡文祥. 书评: 《微波化学》[J]. 微波化学, 2019, 3(2): 15-27. |
[96] |
金钦汉, 戴树珊, 黄卡玛. 微波化学[M]. 北京: 科学出版社, 1999. |
[97] |
张寒琦, 金钦汉. 微波化学[J]. 大学化学, 2001, 16(2): 32-36. |
[98] |
秦宁, 闵清, 阮新志, 等. 书评: 《微波化学研究进展——京东祥鹄微波化学联合实验室微波化学领域相关研究成果目录及部分论文集》[J]. 微波化学, 2019, 3(3): 29-35. |
[99] |
胡曌玺, 王存文, 闵清, 等. 微波化学研究进展——京东祥鹄微波化学联合实验室微波化学领域相关研究成果目录及部分论文集[M]. 武汉: beplay体育官网网页版等您来挑战! , 2019. |
[100] |
丁全青. 芴基环氧树脂的固化机制及性能研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工程大学, 2011. |
[101] |
武文硕. 微波液化玉米秸秆及环氧树脂的制备与性能研究[D]: [硕士学位论文]. 保定: 河北大学, 2015. |
[102] |
Moraa, A.-S., Tayouob, R., Boutevina, B., et al. (2019) Synthesis of Biobased Reactive Hydroxyl Amines by Amination Reaction of Cardanol-Based Epoxy Monomers. European Polymer Journal, 118, 429-436. ://doi.org/10.1016/j.eurpolymj.2019.06.020 |
[103] |
张翠红, 陈志敏, 李松栋, 等. 微波法合成环氧树脂低温固化剂及其性能研究[J]. 热固性树脂,2020, 35(1): 7-11. |
[104] |
张翠红, 陈志敏, 李松栋. 环氧树脂低温固化剂的制备及性能研究[J]. 热固性树脂, 2016, 31(4): 25-27, 36. |
[105] |
Zhang, H.F., Zhu, F.F., Xu, Y., et al. (2017) Microwave-Assisted NaHSO4-Catalyzed Synthesis of Ricinoleic Glycol Ether Esters. Synthetic Communications, 47, 486-495. ://doi.org/10.1080/00397911.2016.1268695 |
[106] |
EhiImoisili, P., Ukoba, K. and Jen, T.-C. (2020) Physical, Mechanical and Thermal Properties of High Frequency Microwave Treated Plantain (Musa paradisiaca) Fibre/MWCNT Hybrid Epoxy Nanocomposites. Journal of Materials Research and Technology, 9, 4933-4939. ://doi.org/10.1016/j.jmrt.2020.03.012 |
[107] |
Liu, X., Luo, J.T., Fan, J.F., et al. (2019) Comprehensive Enhancement in Overall Properties of MWCNTs-COOH/Epoxy Composites by Microwave: An Efficient Approach to Strengthen Interfacial Bonding via Localized Superheating Effect. Composites Part B: Engineering, 174, Article ID: 106909. ://doi.org/10.1016/j.compositesb.2019.106909 |
[108] |
Zhang, C., Liu, L.S., Xu, Z.W., et al. (2018) Improvement for Interface Adhesion of Epoxy/Carbon Fibers Endowed with Carbon Nanotubes via Microwave Plasma-Enhanced Chemical Vapor Deposition. Polymer Composites, 39, E1262-E1268. ://doi.org/10.1002/pc.24843 |
[109] |
Moaseri, E., Behnaz, B., Majid, K., et al. (2019) Mechanical Improvements of Multi-Walled Carbon Nanotube-Epoxy Composite: Covalent Functionalization of Multi-Walled Carbon Nanotube by Epoxy Chains. Polymer Science, Series B, 61, 341-348. ://doi.org/10.1134/S1560090419030072 |
[110] |
OdomMorgan, G.B., Sweeney, C.B., et al. (2017) Rapid Curing and Additive Manufacturing of Thermoset Systems Using Scanning Microwave Heating of Carbon Nanotube/Epoxy Composites. Carbon, 120, 447-453. ://doi.org/10.1016/j.carbon.2017.05.063 |
[111] |
Marciano, S.J., Avelino, F., da Silv, L.R.R., et al. (2020) Microwave-Assisted Phosphorylation of Organosolv Lignin: New Bio-Additives for Improvement of Epoxy Resins Performance. Biomass Conversion and Biorefinery. ://doi.org/10.1007/s13399-020-01048-7 |
[112] |
Carlo, B., Martina, R., Renato, B., et al. (2020) Investigation of Plasma-Assisted Functionalization of Graphitic Materials for Epoxy Composites. Nanomaterials, 10, 78. ://doi.org/10.3390/nano10010078 |
[113] |
Yuan, J.-M., Fan, Z.-F., Yang, Q.-C., et al. (2018) Surface Modification of Carbon Fibers by Microwave Etching for Epoxy Resin Composite. Composites Science and Technology, 164, 222-228. ://doi.org/10.1016/j.compscitech.2018.05.043 |
[114] |
Khaledeh, M., Aziz, A., et al. (2020) Amine-Functionalized TiO2 Nanoparticles Covalently Loaded into Epoxy Networks via Thermal and Microwave Curing Processes. Macromolecular Research, 28, 567-572. ://doi.org/10.1007/s13233-020-8067-3 |
[115] |
Bekeshev, A., Mostovoy, A., et al. (2020) Reinforcement of Epoxy Composites with Application of Finely-Ground Ochre and Electrophysical Method of the Composition Modification. Polymers, 12, 1437. ://doi.org/10.3390/polym12071437 |
[116] |
蔡晓霞. 微波作用下双酚A型环氧树脂固化行为的研究[D]: [硕士学位论文]. 北京: 北京化工大学, 2004. |
[117] |
Sébastien, G., Philippe, T. and Maëlenn, A. (2018) Fast Polymerization at Low Temperature of an Infrared Radiation Cured Epoxy-Amine Adhesive. Thermochimica Acta, 666, 27-35. ://doi.org/10.1016/j.tca.2018.05.018 |
[118] |
孙涛, 常新龙, 赖建伟, 等. 不同固化方式下环氧树脂体系固化行为及力学性能研究[J]. 固体火箭技术, 2012, 35(5): 679-682+687. |
[119] |
谷晓昱, 张军营. 微波固化环氧树脂中非热效应的研究[J]. 高分子材料科学与工程, 2006, 22(3): 183-186. |
[120] |
张远方, 刘学清, 刘继延. 微波固化环氧树脂/氨基二苯醚树脂的耐热性能研究[J]. 中国塑料, 2015, 19(1): 18-21. |
[121] |
耿杰, 李勇, 陈云雷, 等. 环氧树脂聚酰胺体系微波固化特性研究[J]. 玻璃钢/复合材料, 2013(5): 7-13. |
[122] |
孙晓峰, 马世宁, 朱乃姝, 等. 环氧树脂胶粘剂微波固化研究[J]. 中国工程机械学报, 2010, 8(1): 107-110. |
[123] |
Pala, R., Akhtara, M.J. and Kara, K.K. (2018) Study on Dielectric Properties of Synthesized Exfoliated Graphite Reinforced Epoxy Composites for Microwave Processing. Polymer Testing, 70, 8-17. ://doi.org/10.1016/j.polymertesting.2018.06.011 |
[124] |
Deng, H.Y., Yuan, L., Gu, A.J., et al. (2020) Facile Strategy and Mechanism of Greatly Toughening Epoxy Resin Using Polyethersulfone through Controlling Phase Separation with Microwave-Assisted Thermal Curing Technique. Journal of Applied Polymer Science, 137, 48394. ://doi.org/10.1002/app.48394 |
[125] |
郑伟峰, 周来水, 袁铁军, 等. 颗粒Al2O3增强环氧树脂复合材料的微波固化动力学及性能[J]. 高分子材料科学与工程, 2017, 33(10): 65-71. |
[126] |
Bhudolia, S.K., Gohel, G., Joshi, S.C., et al. (2020) Vibration Damping and Dynamic Mechanical Attributes of Core-Shell Particles Modified Glass Epoxy Prepregs Cured Using Microwave Irradiations. Composites Communications, 21, Article ID: 100412. ://doi.org/10.1016/j.coco.2020.100412 |
[127] |
常新龙, 马仁利, 张晓军, 等. 微波固化玻璃纤维缠绕复合材料试验研究[J]. 固体火箭技术, 2016, 39(6): 806-814. |
[128] |
Rajeshwar, B.K., Jang, I. and Yi, C.K. (2019) Effect of Microwave on Mechanical Properties of Epoxy Mortar. Construction and Building Materials, 218, 681-688. ://doi.org/10.1016/j.conbuildmat.2019.05.155 |
[129] |
Zhang, X., Wang, X.Q., Xu, X.H., et al. (2017) Microwave Curing Process and Mechanical Properties Study of Epoxy Mortars for Repairing Concrete Pavement Rapidly. Journal of Reinforced Plastics and Composites, 36, 443-451. ://doi.org/10.1177/0731684416683026 |
[130] |
欧忠文, 白敏, 陈云, 等. 纳米银对环氧树脂的增韧改性及其微波固化行为[J]. 稀有金属材料与工程, 2012, 41(4): 649-652. |
[131] |
Ranu, P., Abhishek, K., Akhtar, M.J., et al. (2017) Enhanced Microwave Processing of Epoxy Nanocomposites Using Carbon Black Powders. Advanced Powder Technology, 28, 1281-1290. ://doi.org/10.1016/j.apt.2017.02.016 |
[132] |
陈云雷, 李勇, 耿杰, 等. 石墨对E-51环氧树脂体系微波固化速率的影响[J]. 航空学报, 2013, 34(12): 2833-2840. |
[133] |
Cai, C.T., Zhang, Y., Zou, X.T., et al. (2017) Rapid Self-Healing and Recycling of Multiple-Responsive Mechanically Enhanced Epoxy Resin/Graphene Nanocomposites. RSC Advances, 7, 46336-46343. ://doi.org/10.1039/C7RA09258J |
[134] |
Ranu, P., Akhtar, M.J. and KarKamal, K. (2018) Microwave-Assisted Curing of Silicon Carbide-Reinforced Epoxy Composites: Role of Dielectric Properties. JOM, 70, 1295-1301. ://doi.org/10.1007/s11837-018-2855-7 |
[135] |
刘学清, 王源升. 微波固化环氧树脂/SiO2复合材料及其性能的研究[J]. 热固性树脂, 2003, 18(2): 8-11. |
[136] |
Liu, X.Y., He, Y.N., Qiu, D.C., et al. (2019) Numerical Optimizing and Experimental Evaluation of Stepwise Rapid High-Pressure Microwave Curing Carbon Fiber/Epoxy Composite Repair Patch. Composite Structures, 230, Article ID: 111529. ://doi.org/10.1016/j.compstruct.2019.111529 |
[137] |
Li, N.Y., Li, Y.G., et al. (2017) A New Process Control Method for Microwave Curing of Carbon Fibre Reinforced Composites in Aerospace Applications. Composites Part B: Engineering, 122, 61-70. ://doi.org/10.1016/j.compositesb.2017.04.009 |
[138] |
李自强, 湛利华, 常腾飞, 等. 基于微波固化工艺的碳纤维T800/环氧树脂复合材料固化反应动力学[J]. 复合材料学报, 2018, 35(9): 2458-2464. |
[139] |
张青, 常新龙, 张有宏, 等. 碳纤维/环氧树脂复合材料微波固化试验[J]. 宇航材料工艺, 2018, 48(6): 58-62. |
[140] |
何栋, 唐婷. 基于微波固化技术的碳纤维/环氧树脂复合材料试验[J]. 粘接, 2019, 40(11): 67-70. |
[141] |
文友谊, 文琼华, 李帆, 等. 碳纤维增强树脂基复合材料微波固化技术[J]. 航空制造技术, 2015, 58(s1): 61-64. |
[142] |
Park, E.-T., Lee, Y., Kim, J., et al. (2019) Experimental Study on Microwave-Based Curing Process with Thermal Expansion Pressure of PTFE for Manufacturing Carbon Fiber/Epoxy Composites. Materials, 12, 3737. ://doi.org/10.3390/ma12223737 |
[143] |
Zhang, L.L., Li, Y.G. and Zhou, J. (2018) Anisotropic Dielectric Properties of Carbon Fiber Reinforced Polymer Composites during Microwave Curing. Applied Composite Materials, 25, 1339-1356. ://doi.org/10.1007/s10443-017-9669-6 |
[144] |
Chen, X.P., Zhan, L.H., Pu, Y.W., et al. (2018) Effect of Cure Pressure on Microstructure and Interlaminar Shear Strength Properties of Carbon Fiber-Reinforced Plastics with Microwave Curing. High Performance Polymers, 30, 1084-1093. ://doi.org/10.1177/0954008317739679 |
[145] |
Colangelo, R., et al. (2017) Epoxy/Glass Fibres Composites for Civil Applications: Comparison between Thermal and Microwave Crosslinking Routes. Composites Part B: Engineering, 126, 100-107. ://doi.org/10.1016/j.compositesb.2017.06.003 |
[146] |
刘文博, 常秋英, 张浩, 等. 固化方式对粘结固体润滑涂层摩擦学性能的影响[J]. 空间控制技术与应用, 2020, 46(4): 64-71. |
[147] |
龙祥, 卢雪峰, 钱坤. 固化方式对三维浅交弯联机织复合材料弯曲性能的影响[J]. 材料科学与工程学报, 2017, 35(1): 125-128. |
[148] |
钟发春, 贺江平, 王晓川, 等. 微波固化环氧泡沫材料的结构和性能研究[J]. 材料导报, 2006, 20(8): 149-151. |
[149] |
王强华. 微波辅助固化用于树脂传递模塑[J]. 玻璃钢, 2013, 12(2): 47-49, 40. |
[150] |
Xi, J.J. and Yu, Z.Q. (2017) Toughening Mechanism of Rubber Reinforced Epoxy Composites by Thermal and Microwave Curing. Journal of Applied Polymer Science, 135, 45767. ://doi.org/10.1002/app.45767 |
[151] |
耿杰. 环氧树脂及其复合材料微波固化工艺研究[D]: [硕士学位论文]. 南京: 南京航空航天大学, 2013. |
[152] |
Rajeshwar, B.K., Yemam, D.M., Jang, I., et al. (2020) The Effects of Sand Washing Waste and Microwave Curing on the Dimensional Stability of Epoxy Mortar. Construction and Building Materials, 250, Article ID: 118892. ://doi.org/10.1016/j.conbuildmat.2020.118892 |
[153] |
胡红兵. 环氧基CCL废料应用的探讨[J]. 覆铜板资讯, 2007(4): 30. |
[154] |
Zhao, X., Wang, X.-L., Tian, F., et al. (2019) A Fast and Mild Closed-Loop Recycling of Anhydride-Cured Epoxy through Microwave Assisted Catalytic Degradation by Trifunctional Amine and Subsequent Reuse without Separation. Green Chemistry, 21, 2487-2493. ://doi.org/10.1039/C9GC00685K |
[155] |
Deng, J.Y., Xu, L., Zhang, L.B., et al. (2019) Recycling of Carbon Fibers from CFRP Waste by Microwave Thermolysis. Processes, 7, 207. ://doi.org/10.3390/pr7040207 |
[156] |
Tominaga, Y., Shimamoto, D. and Hotta, Y. (2018) Curing Effects on Interfacial Adhesion between Recycled Carbon Fiber and Epoxy Resin Heated by Microwave Irradiation. Materials, 11, 493. ://doi.org/10.3390/ma11040493 |
[157] |
Tian, F., Yang, Y., Wang, X.L., et al. (2019) From Waste Epoxy Resins to Efficient Oil/Water Separation Materials via Microwave Assisted Pore-Forming Strategy. Materials Horizons, 6, 1733-1739. ://doi.org/10.1039/C9MH00541B |
[158] |
Li, Y.G., Cheng, L.B. and Zhou, J. (2018) Curing Multidirectional Carbon Fiber Reinforced Polymer Composites with Indirect Microwave Heating. The International Journal of Advanced Manufacturing Technology, 97, 1137-1147. ://doi.org/10.1007/s00170-018-1974-1 |
[159] |
Hubbard, R.L., Tyler, D.R. and Thompson, B. (2021) An Empirically Derived Model for Further Increasing Microwave Curing Rates of Epoxy-Amine Polymerizations. Journal of Applied Polymer Science, 138, e49635. ://doi.org/10.1002/app.49635 |
[160] |
张翔, 常新龙, 张有宏, 等. 先进树脂基复合材料微波固化过程数值模拟[J]. 空军工程大学学报(自然科学版), 2019, 20(2): 105-111. |
[161] |
李耶斯豆阿吉, 杜维唯, 姜山, 等. 利用微波能量均匀加热减少气泡的环氧树脂成型方法[P]. 中国, 201310392311.2. 2013-12-25. |
[162] |
雷运波, 曹雪娟, 谢拂伊. 环氧树脂微波固化情况检测方法及装置[P]. 中国专利, 101975791A. 2011-02-16. |
[163] |
He, Y.X., Li, Y.G., Li, N.Y., et al. (2018) Online Monitoring Method of Degree of Cure during Non-Isothermal Microwave Curing Process. Materials Research Express, 5, Article ID: 025306. ://doi.org/10.1088/2053-1591/aaad33 |
[164] |
徐学宏, 王小群, 闫超, 等. 环氧树脂及其复合材料微波固化研究进展[J]. 材料工程, 2016, 44(8): 111-120. |
[165] |
Chinedum, O.M., Li, D.N., Lin, M.-F., et al. (2018) Accelerated Microwave Curing of Fibre-Reinforced Thermoset Polymer Composites for Structural Applications: A Review of Scientific Challenges. Composites Part A, 115, 88-103. ://doi.org/10.1016/j.compositesa.2018.09.012 |
[166] |
Wu, Y., Xie, T., Xiao, W., et al. (2018) A Novel Microwave Combined Ultraviolet Radiator Based on Slotted Coaxial Line for Epoxy Resin Curing. AIP Advances, 8, Article ID: 115021. ://doi.org/10.1063/1.5048530 |
[167] |
Felice, R., Vitantonio, E., Tucci, et al. (2020) Flow Enhancement in Liquid Composite Molding Processes by Online Microwave Resin Preheating. Polymer Engineering & Science, 60, 2377-2389. ://doi.org/10.1002/pen.25477 |
[168] |
胡文祥, 袁承业. 微波、超声波催化有机磷酸酯水解反应[R]. 研究生Seminar报告, 中国科学院上海有机所, 1985. |
[169] |
胡文祥, 恽榴红. 微波催化在有机和药物化学中的应用研究[R]. 军事医学科学院药化专业年会报告, 北京, 1989. |
[170] |
胡文祥, 恽榴红. 物理催化在有机药物化学中的应用研究[R]. 第十一届全军药学专业委员会学术报告, 北京, 1992. |
[171] |
胡文祥, 恽榴红. 超声波技术在有机药物化学中的应用[J]. 中国药物化学杂志, 1993, 3(1): 76-78. |
[172] |
胡文祥. 比较学与比较化学导论[J]. 科学(Scientific American中文版), 1994(7): 1-7. |
[173] |
陆模文, 胡文祥, 恽榴红. 有机微波化学研究进展[J]. 有机化学, 1995, 15(6): 561-566. |
[174] |
胡文祥, 恽榴红. 超声波、微波和酶催化在有机药物合成中的某些应用[J]. 军事医学科学院院刊, 1995, 19(4): 253. |
[175] |
胡文祥, 袁承业. 烷基膦酸单酯的合成[J]. 化学学报, 1996, 54(1): 77-83. |
[176] |
胡文祥, 恽榴红. 有机药物合成化学中生物、化学和物理催化方法[J]. 科技通报, 1996, 12(5): 320. |
[177] |
胡文祥. 《微波化学》创刊词——唯有微波可壮志敢教化学换新天[J]. 微波化学, 2017, 1(1): 1-2. |
[178] |
胡文祥, 恽榴红, 曹惠生, 等. 新型微波反应器[P]. 中国, ZL97201861.1. 1998-06-17. |
[179] |
Hu, W.X. and Peng, Q.T. (2000) Rapid Synthesis of Tetraphenylporphyrin with Microwave Irradiation. Chemical Journal on Internet, 2, 54-55. |
[180] |
Hu, W.X. and Wang, J.Y. (2001) Combinatorial Catalysis with Physical, Chemical and Biological Methodologies. Chemical Journal on Internet, 3, 44-46. |
[181] |
Liu, M. and Hu, W.X. (2013) Recent Progress of Microwave Irradiation in Synthesis and Diagnosis Treatment. Advanced Material Research, 616-618, 1711-1716. ://doi.org/10.4028/www.scientific.net/AMR.616-618.1711 |
[182] |
Han, X., Shao, K.Y. and Hu, W.X. (2018) Synthesis of 9-Substituted Berberine Derivatives with Microwave Irradiation. Chemical Research in Chinese University, 34, 571-577. ://doi.org/10.1007/s40242-018-7425-6 |