[1] |
杨毅青, 徐东东. 铣削力建模技术研究及实验对比[J]. 中国科技论文, 2015(4): 391-393. |
[2] |
杨毅青, 张斌, 刘强. 铣削建模中多种切削力模型的分析比较[J]. 振动工程学报, 2015, 28(1): 82-90. |
[3] |
Zhang, X., Zhang, J. and Pang, B. (2016) An Efficient Approach for Milling Dynamics Modeling and Analysis with Varying Time Delay and Cutter Runout Effect. The International Journal of Advanced Manufacturing Technology, 87, 3373-3388. https://doi.org/10.1007/s00170-016-8671-8 |
[4] |
Jung, J., Ngo, C. and Son (2016) Nonlinear Modeling and Dy-namic Simulation Using Bifurcation and Stability Analyses of Regenerative Chatter of Ball-End Milling Process. Mathematical Problems in Engineering, 2016, Article ID: 4368680. https://doi.org/10.1155/2016/4368680 |
[5] |
Zuperl, U., Cus, F. and Mursec, B. (2006) A Generalized Neural Network Model of Ball-End Milling Force System. Journal of Materials Processing Technology, 175, 98-108. https://doi.org/10.1016/j.jmatprotec.2005.04.036 |
[6] |
郑金兴. 粒子群优化人工神经网络在高速铣削力建模中的应用[J]. 计算机集成制造系统, 2008, 14(9): 1710-1716. |
[7] |
Huang, C.Y. and Wang, J.J.J. (2007) Mechanistic Modeling of Process Damping in Peripheral Milling. Journal of Manufacturing Science and Engineering, 129, 397-406. https://doi.org/10.1115/1.2335857 |
[8] |
Sellmeier, V. and Denkena, B. (2012) High Speed Process Damping in Milling. CIRP Journal of Manufacturing Science and Technology, 5, 8-19. https://doi.org/10.1016/j.cirpj.2011.12.001 |
[9] |
Wu, D.W. (1989) A New Approach of Formulating the Transfer Function for Dynamic Cutting Process. Journal of Manufacturing Science and Engineering, 111, 37-47. https://doi.org/10.1115/1.3188730 |
[10] |
Engin, S. and Altintas, Y. (2001) Mechanics and Dynamics of General Milling Cutters. Part I: Helical End Mills. International Journal of Machine Tools and Manufacture, 41, 2195-2212. https://doi.org/10.1016/S0890-6955(01)00045-1 |
[11] |
Catania, G. and Mancinelli, N. (2009) A Coupled Theoret-ical-Experimental Dynamical Model for Chatter Prediction in Milling Processes. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 48982, 175-184. https://doi.org/10.1115/DETC2009-86216 |
[12] |
Gao, S.H., Meng, G. and Long, X.H. (2011) Study of Milling Stability with Hertz Contact Stiffness of Ball Bearings. Archive of Applied Mechanics, 81, 1141-1151. https://doi.org/10.1007/s00419-010-0475-y |
[13] |
Li, H.Z, Li, X.P. and Chen, X.Q. (2003) A Novel Chatter Stability Criterion for the Modelling and Simulation of the Dynamic Milling Process in the Time Domain. The International Journal of Advanced Manufacturing Technology, 22, 619-625. https://doi.org/10.1007/s00170-003-1562-9 |
[14] |
Li, Z.Q. and Liu, Q. (2008) Solution and Analysis of Chatter Stability for End Milling in the Time-Domain. Chinese Journal of Aeronautics, 21, 169-178. https://doi.org/10.1016/S1000-9361(08)60022-9 |
[15] |
Campomanes, M.L. and Altintas, Y. (2003) An Improved Time Domain Simulation for Dynamic Milling at Small Radial Immersions. Journal of Manufacturing Science & Engineering, 125, 416-422. https://doi.org/10.1115/1.1580852 |
[16] |
刘强, 李忠群. 数控铣削加工过程仿真与优化——建模、算法与工程应用[M]. 北京: 航空工业出版社, 2011. |
[17] |
Insperger, T. and Stépán, G. (2004) Updated Semi-Discretization Method for Periodic Delay-Differential Equations with Discrete Delay. International Journal for Numerical Methods in Engineering, 61, 117-141. https://doi.org/10.1002/nme.1061 |
[18] |
Henninger, C. and Eberhard, P. (2008) Improving the Computational Effi-ciency and Accuracy of the Semi-Discretization Method for Periodic Delay-Differential Equations. European Journal of Mechanics A Solids, 27, 975-985. https://doi.org/10.1016/j.euromechsol.2008.01.006 |
[19] |
Jiang, S., Sun, Y., and Yuan, X. (2017) A Second-Order Semi-Discretization Method for the Efficient and Accurate Stability Prediction of Milling Process. The International Journal of Advanced Manufacturing Technology, 92, 583-595. https://doi.org/10.1007/s00170-017-0171-y |
[20] |
Huang, T., Zhang, X. and Zhang, X. (2013) An Efficient Linear Approximation of Acceleration Method for Milling Stability Prediction. International Journal of Machine Tools and Manufacture, 74, 56-64. https://doi.org/10.1016/j.ijmachtools.2013.07.006 |
[21] |
李忠群, 彭岳荣, 夏磊, 朱帆. 基于三阶龙格库塔法的铣削稳定性半解析法预测[J]. 航空制造技术, 2016(Z2): 30-33. |
[22] |
丁烨. 铣削动力学——稳定性分析方法与应用[D]: [博士学位论文]. 上海: 上海交通大学, 2011. |
[23] |
Liu, Y., Zhang, D. and Wu, B. (2012) An Efficient Full-Discretization Method for Prediction of Milling Stability. International Journal of Machine Tools and Manufacture, 63, 44-48. https://doi.org/10.1016/j.ijmachtools.2012.07.008 |
[24] |
Quo, Q., Sun, Y. and Jiang, Y. (2012) On the Accurate Calculation of Milling Stability Limits Using Third-Order Full-Discretization Method. International Journal of Machine Tools and Manufacture, 62, 61-66. https://doi.org/10.1016/j.ijmachtools.2012.05.001 |
[25] |
Ozoegwu, C.G., Omenyi, S.N. and Ofochebe, S.M. (2015) Hyper-Third Order Full-Discretization Methods in Milling Stability Prediction. International Journal of Machine Tools and Manufacture, 92, 1-9. https://doi.org/10.1016/j.ijmachtools.2015.02.007 |
[26] |
Yang, W.A., Huang, C. and Cai, X.L. (2020) Effective and Fast Prediction of Milling Stability Using a Precise Integration-Based Third-Order Full-Discretization Method. The International Journal of Advanced Manufacturing Technology, 106, 4477-4498. https://doi.org/10.1007/s00170-019-04790-z |
[27] |
Qin, C., Tao, J. and Liu, C. (2018) A Predictor-Corrector-Based Holistic-Discretization Method for Accurate and Efficient Milling Stability Analysis. The International Journal of Ad-vanced Manufacturing Technology, 96, 2043-2054. https://doi.org/10.1007/s00170-018-1727-1 |
[28] |
Bayly, P.V., Halley, J.E., Mann, B.P. and Davies, M.A. (2003) Stability of Interrupted Cutting by Temporal Finite Element Analysis. Journal of Manufacturing Science & Engineering, 125, 220-225. https://doi.org/10.1115/1.1556860 |
[29] |
姜燕, 郭强, 赵波. 铣削稳定性预测的时间有限元法[J]. 河南理工大学学报(自然科学版), 2016, 35(5): 672-676. |
[30] |
Peng, C., Wang, L. and Liao, T.W. (2015) A New Method for the Prediction of Chatter Stability Lobes Based on Dynamic Cutting Force Simulation Model and Support Vector Machine. Journal of Sound and Vibration, 354, 118-131. https://doi.org/10.1016/j.jsv.2015.06.011 |
[31] |
罗作国. 切削颤振辨识及主动抑制策略的研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2007. |
[32] |
胡国志, 叶文华, 李佳璇, 等. 铣削颤振在线智能控制方法研究[J]. 制造技术与机床, 2017(6): 76-79, 84. |
[33] |
Pérez-Canales, D., Vela-Martínez, L. and Jáuregui-Correa, J.C. (2012) Analysis of the Entropy Randomness Index for Machining Chatter Detection. International Journal of Machine Tools and Man-ufacture, 62, 39-45. https://doi.org/10.1016/j.ijmachtools.2012.06.007 |
[34] |
Altintas, Y. and Chan, P.K. (1992) In-Process Detection and Suppression of Chatter in Milling. International Journal of Machine Tools and Manufacture, 32, 329-347. https://doi.org/10.1016/0890-6955(92)90006-3 |
[35] |
Schmitz, T.L., Medicus, K. and Dutterer, B. (2002) Exploring Once-per-Revolution Audio Signal Variance as a Chatter Indicator. Machining Science and Technology, 6, 215-233. https://doi.org/10.1081/MST-120005957 |
[36] |
Delio, T., Tlusty, J. and Smith, S. (1992) Use of Audio Signals for Chatter Detection and Control. Journal of Manufacturing Science & Engineering, 114, 146. https://doi.org/10.1115/1.2899767 |
[37] |
Smith, S. and Tlusty, J. (1990) Update on High-Speed Milling Dynamics. https://doi.org/10.1115/1.2899557 |
[38] |
Smith, S. and Tlusty, J. (1990) Update on High-Speed Milling Dynamics. Journal of Engineering for Industry, 112, 142-149. https://doi.org/10.1115/1.2899557 |
[39] |
Wang, L. and Liang, M. (2009) Chatter Detection Based on Probability Distribution of Wavelet Modulus Maxima. Robotics and Comput-er-Integrated Manufacturing, 25, 989-998. https://doi.org/10.1016/j.rcim.2009.04.011 |
[40] |
Li, K., He, S. and Luo, B. (2017) Online Chatter Detection in Milling Process Based on VMD and Multiscale Entropy. The International Journal of Advanced Manufacturing Technology, 105, 5009-5022. https://doi.org/10.1007/s00170-019-04478-4 |
[41] |
Yang, K., Wang, G. and Dong, Y. (2019) Early Chatter Identi-fication Based on an Optimized Variational Mode Decomposition. Mechanical Systems and Signal Processing, 115, 238-254. https://doi.org/10.1016/j.ymssp.2018.05.052 |
[42] |
Ji, Y., Wang, X. and Liu, Z. (2017) EEMD-Based Online Milling Chatter Detection by Fractal Dimension and Power Spectral Entropy. The International Journal of Ad-vanced Manufacturing Technology, 92, 1185-1200. https://doi.org/10.1007/s00170-017-0183-7 |
[43] |
Wan, S., Li, X. and Chen, W. (2018) Investigation on Milling Chatter Identification at Early Stage with Variance Ratio and Hilbert-Huang Transform. The International Journal of Advanced Manufacturing Technology, 95, 3563-3573. https://doi.org/10.1007/s00170-017-1410-y |
[44] |
任静波, 孙根正, 陈冰. 基于小波包能谱熵的铣削颤振监测方法[J]. 工具技术, 2014(11): 76-79. |
[45] |
Ji, Y., Wang, X. and Liu, Z. (2918) Early Milling Chatter Identification by Improved Empirical Mode Decomposition and Multi-Indicator Synthetic Evaluation. Journal of Sound and Vibration, 433, 138-159. https://doi.org/10.1016/j.jsv.2018.07.019 |
[46] |
马振. 铣削加工过程中振动状态的识别与溯源[D]: [硕士学位论文]. 武汉: 华中科技大学, 2017. |
[47] |
于英华, 徐兴强, 徐平. 切削颤振的在线监测与控制研究现状分析[J]. 振动与冲击, 2007(1): 130-132+135+166. |
[48] |
杨毅青, 谢日成, 徐东东. 旋转变刚度阻尼器抑制薄壁零件铣削颤振[J]. 振动与冲击, 2018, 37(2): 72-75, 84. |
[49] |
闫占辉, 勾治践, 于骏一. 变速铣削的综合试验分析[J]. 试验技术与试验机, 2002, 42(1): 51-52. |
[50] |
宋春雷, 彭志科. 变速铣削稳定性预测的整体离散算法[J]. 噪声与振动控制, 2016, 36(6): 7-11+31. |
[51] |
于骏一, 吴博达, 杨国辉. 变速铣削工艺的试验研究[J]. 机械制造, 1993(9): 12-13. |