垂心四面体的勾股4态15个外接球半径、外心坐标及距离的算法——四维体积勾股定理的应用(公式九)
Calculation of radius, Circumcenter Coordinates and Distance of 15 Circumscribed Spheres of Pythagorean 4-State in a Orthocentric Tetrahedron—Application of Pythagorean Theorem of Four Dimensional Volume (Formula 9)
摘要: 用正交4球半径的4元数,证明:垂心四面体的勾股4态[2]的15个外接球[3]半径同构公式、外心坐标同构公式;及其用外接球半径计算外心距离公式;以及12组棱角、6组面角,它们的互补对角的正弦余弦的代数值公式。
Abstract: By using the quaternions of orthogonal 4-sphere radius, it is proved that there are 15 isomorphic formulas of circumscribed sphere radius and circumcenter coordinate isomorphism of the Pythagorean 4-state of the orthocentric tetrahedron, and the formula of calculating the distance of the circumcenter by using the radius of circumscribed sphere, As well as 12 sets of angles, 6 sets of face angles, their complementary diagonal sine and cosine of the numerical formula.
参考文献
[1] |
蔡国伟 体积勾股定理的证明[J]. 理论数学 2019.9(6):723-729. |
[2] |
蔡国伟 论勾股四态、以及正交球心间同构的场方程[J]. 理论数学 2019.9(7):763-770 |
[3] |
蔡国伟 证明以正交4球半径为4元数欧拉线的算法[J]. 理论数学 2019.9(9):1043-1059 |
[4] |
蔡国伟 证明正交四球间15个重心球及距离公式的算法[J]. 理论数学 2019.9(8):880-889 |
[5] |
蔡国伟 证明正交四球间15个垂心球及距离公式的算法[J]. 理论数学 2019.9(8):928-948. |
[6] |
蔡国伟 垂心四面体4态的正弦余弦定律及其换元算法[J]. 理论数学 2019.9(10):1174-1186. |