[1]
|
Besson-Bard, A., Pugin, A. and Wendehenne, D. (2008) New Insights into Nitric Oxide Signaling in Plants. Annual Review of Plant Biology, 59, 21-39. https://doi.org /10.1146/annurev.arplant.59.032607.092830
|
[2]
|
Urushitani, M. and Shimohama, S. (2001) The Role of Nitric Oxide in Amyotrophic Lateral Sclerosis. Amyotrophic Lateral Scle-rosis and Other Motor Neuron Disorders, 2, 71-81. https://doi.org /10.1080/146608201316949415
|
[3]
|
Kone, B.C., Kuncewicz, T., Zhang, W. and Yu, Z.Y. (2003) Protein Interactions with Nitric Oxide Synthases: Controlling the Right Time, the Right Place and the Right Amount of Nitric Oxide. American Journal of Physiology-Renal Physiology, 285, F178-F190. https://doi.org /10.1152/ajprenal.00048.2003
|
[4]
|
Sahay, S. and Gupta, M. (2017) An Update on Nitric Oxide and Its Benign Role in Plant Responses under Metal Stress. Nitric Oxide, 67, 39-52. https://doi.org /10.1016/j.niox.2017.04.011
|
[5]
|
Kneeshaw, S., Gelineau, S., Tada, Y., Loake, G.J. and Spoel, S.H. (2014) Selective Protein Denitrosylation Activity of Thioredoxin-h5 Modulates Plant Immunity. Molecular Cell, 56, 153-162. https://doi.org /10.1016/j.molcel.2014.08.003
|
[6]
|
Tada, Y., Spoel, S.H., Pajerowska-Mukhtar, K., Mou, Z., Song, J., Wang, C. and Dong, X. (2008) Plant Immunity Requires Conformational Changes of NPR1 via S-Nitrosylation and Thioredoxins. Science, 321, 952-956.
https://doi.org /10.1126/science.1156970
|
[7]
|
Huang, D., Huo, J., Zhang, J., Wang, C., Wang, B., Fang, H. and Liao, W. (2019) Protein S-Nitrosylation in Programmed Cell Death in Plants. Cellular and Molecular Life Sciences, 76, 1877-1887.
https://doi.org /10.1007/s00018-019-03045-0
|
[8]
|
Liu, L., Hausladen, A., Zeng, M., Que, L., Heitman, J. and Stamler, J.S. (2001) A Metabolic Enzyme for S-Nitrosothiol Conserved from Bacteria to Humans. Nature, 410, 490-494. https://doi.org /10.1038/35068596
|
[9]
|
Mata-Perez, C., Sanchez-Calvo, B., Padilla, M.N., Bega-ra-Morales, J.C., Valderrama, R., Corpas, F.J. and Barroso, J.B. (2017) Nitro-Fatty Acids in Plant Signaling: New Key Mediators of Nitric Oxide Metabolism. Redox Biology, 11, 554-561. https://doi.org /10.1016/j.redox.2017.01.002
|
[10]
|
Baxter, A., Mittler, R. and Suzuki, N. (2014) ROS as Key Players in Plant Stress Signalling. Journal of Experimental Botany, 65, 1229-1240. https://doi.org /10.1093/jxb/ert375
|
[11]
|
Gupta, D.K., Inouhe, M., Rodriguez-Serrano, M., Romero-Puertas, M.C. and Sandalio, L.M. (2013) Oxidative Stress and Arsenic Toxicity: Role of NADPH Oxidases. Chemosphere, 90, 1987-1996.
https://doi.org /10.1016/j.chemosphere.2012.10.066
|
[12]
|
Yamasaki, H. and Sakihama, Y. (2000) Simultaneous Production of Nitric Oxide and Peroxynitrite by Plant Nitrate Reductase: In Vitro Evidence for the NR-Dependent Formation of Active Nitrogen Species. FEBS Letters, 468, 89-92.
https://doi.org /10.1016/S0014-5793(00)01203-5
|
[13]
|
Lea, U.S., Ten Hoopen, F., Provan, F., Kaiser, W.M., Meyer, C. and Lillo, C. (2004) Mutation of the Regulatory Phosphorylation Site of Tobacco Nitrate Reductase Results in High Nitrite Excretion and NO Emission from Leaf and Root Tissue. Planta, 219, 59-65. https://doi.org /10.1007/s00425-004-1209-6
|
[14]
|
Rockel, P., Strube, F., Rockel, A., Wildt, J. and Kaiser, W.M. (2002) Regulation of Nitric Oxide (NO) Production by Plant Nitrate Reductase in Vivo and in Vitro. Journal of Experimental Botany, 53, 103-110.
https://doi.org /10.1093/jexbot/53.366.103
|
[15]
|
Vanin, A.F., Svistunenko, D.A., Mikoyan, V.D., Serezhenkov, V.A., Fryer, M.J., Baker, N.R. and Cooper, C.E. (2004) Endogenous Superoxide Production and the Nitrite/Nitrate Ra-tio Control the Concentration of Bioavailable Free Nitric Oxide in Leaves. The Journal of Biological Chemistry, 279, 24100-24107. https://doi.org /10.1074/jbc.M312601200
|
[16]
|
Bright, J., Desikan, R., Hancock, J.T., Weir, I.S. and Neill, S.J. (2006) ABA-Induced NO Generation and Stomatal Closure in Arabidopsis Are Dependent on H2O2 Synthesis. The Plant Journal, 45, 113-122.
https://doi.org /10.1111/j.1365-313X.2005.02615.x
|
[17]
|
Desikan, R., Cheung, M.K., Bright, J., Henson, D., Hancock, J.T. and Neill, S.J. (2004) ABA, Hydrogen Peroxide and Nitric Oxide Signalling in Stomatal Guard Cells. Journal of Experimental Botany, 55, 205-212.
https://doi.org /10.1093/jxb/erh033
|
[18]
|
Stohr, C., Strube, F., Marx, G., Ullrich, W.R. and Rockel, P. (2001) A Plasma Membrane-Bound Enzyme of Tobacco Roots Catalyses the Formation of Nitric Oxide from Nitrite. Planta, 212, 835-841.
https://doi.org /10.1007/s004250000447
|
[19]
|
Stohr, C. and Stremlau, S. (2006) Formation and Possible Roles of Nitric Oxide in Plant Roots. Journal of Experimental Botany, 57, 463-470. https://doi.org /10.1093/jxb/erj058
|
[20]
|
Sun, L.R., Zhao, Z.J. and Hao, F.S. (2019) NADPH Oxidases, Essential Players of Hormone Signalings in Plant Development and Response to Stresses. Plant Signaling and Behavior, 14, 1657343.
https://doi.org /10.1080/15592324.2019.1657343
|
[21]
|
Anjum, N., Amreen, A., Tantray, A.Y., Khan, N.A. and Ahmad, A. (2019) Reactive Oxygen Species Detection-Approaches in Plants: Insights into Genetically Encoded FRET-Based Sensors. Journal of Biotechnology, 308, 108-117.
https://doi.org /10.1016/j.jbiotec.2019.12.003
|
[22]
|
Foyer, C.H. and Noctor, G. (2005) Redox Homeostasis and Antioxidant Signaling: A Metabolic Interface between Stress Perception and Physiological Responses. Plant Cell, 17, 1866-1875. https://doi.org /10.1105/tpc.105.033589
|
[23]
|
Mittler, R., Vanderauwera, S., Suzuki, N., Miller, G., Tognetti, V.B., Vandepoele, K. and Van Breusegem, F. (2011) ROS Signaling: The New Wave? Trends in Plant Science, 16, 300-309. https://doi.org /10.1016/j.tplants.2011.03.007
|
[24]
|
Bailey-Serres, J. and Mittler, R. (2006) The Roles of Reactive Oxygen Species in Plant Cells. Plant Physiology, 141, 311. https://doi.org /10.1104/pp.104.900191
|
[25]
|
Airaki, M., Leterrier, M., Mateos, R.M., Valderrama, R., Chaki, M., Barroso, J.B. and Corpas, F.J. (2012) Metabolism of Reactive Oxygen Species and Reactive Nitrogen Species in Pepper (Capsicum an-nuum L.) Plants under Low Temperature Stress. Plant Cell Environment, 35, 281-295. https://doi.org /10.1111/j.1365-3040.2011.02310.x
|
[26]
|
Monjil, M.S., Shibata, Y., Takemoto, D. and Kawakita, K. (2013) BiS-Aryl Methanone Compound Is a Candidate of Nitric Oxide Producing Elicitor and Induces Resistance in Nicotiana bentha-miana against Phytophthora Infestans. Nitric Oxide, 29, 34-45. https://doi.org /10.1016/j.niox.2012.12.004
|
[27]
|
Peleg-Grossman, S., Melamed-Book, N., Cohen, G. and Levine, A. (2010) Cytop-lasmic H2O2 Prevents Translocation of NPR1 to the Nucleus and Inhibits the Induction of PR Genes in Arabidopsis. Plant Signaling & Behavior, 5, 1401-1406. https://doi.org /10.4161/psb.5.11.13209
|
[28]
|
Yun, B.W., Feechan, A., Yin, M., Saidi, N.B., Le Bihan, T., Yu, M. and Loake, G.J. (2011) S-Nitrosylation of NADPH Oxidase Regulates Cell Death in Plant Immunity. Nature, 478, 264-268. https://doi.org /10.1038/nature10427
|
[29]
|
Suzuki, N., Miller, G., Morales, J., Shulaev, V., Torres, M.A. and Mittler, R. (2011) Respiratory Burst Oxidases: The Engines of ROS Sig-naling. Current Opinion in Plant Biology, 14, 691-699. https://doi.org /10.1016/j.pbi.2011.07.014
|
[30]
|
Rasul, S., Dubreuil-Maurizi, C., Lamotte, O., Koen, E., Poinssot, B., Alcaraz, G. and Jeandroz, S. (2012) Nitric Oxide Production Mediates Oligogalacturonide-Triggered Immunity and Resistance to Botrytis Cinerea in Arabidopsis thaliana. Plant Cell Environment, 35, 1483-1499. https://doi.org /10.1111/j.1365-3040.2012.02505.x
|
[31]
|
Ortega-Galisteo, A.P., Rodriguez-Serrano, M., Pazmino, D.M., Gupta, D.K., Sandalio, L.M. and Romero-Puertas, M.C. (2012) S-Nitrosylated Proteins in Pea (Pisum sativum L.) Leaf Peroxisomes: Changes under Abiotic Stress. Journal of Experimental Botany, 63, 2089-2103. https://doi.org /10.1093/jxb/err414
|
[32]
|
Radi, R. (2013) Protein Tyrosine Nitration: Biochemical Mechanisms and Structural Basis of Functional Effects. Accounts of Chemical Research, 46, 550-559. https://doi.org /10.1021/ar300234c
|
[33]
|
Romero-Puertas, M.C., Rodriguez-Serrano, M. and Sandalio, L.M. (2013) Protein S-Nitrosylation in Plants under Abiotic Stress: An Overview. Frontiers in Plant Science, 4, 373. https://doi.org /10.3389/fpls.2013.00373
|
[34]
|
Kotak, S., Larkindale, J., Lee, U., von Koskull-Doring, P., Vierling, E. and Scharf, K.D. (2007) Complexity of the Heat Stress Response in Plants. Current Opinion in Plant Biology, 10, 310-316. https://doi.org /10.1016/j.pbi.2007.04.011
|
[35]
|
Hess, D.T. and Stamler, J.S. (2012) Regulation by S-nitrosylation of Protein Post-Translational Modification. The Journal of Biological Chemistry, 287, 4411-4418. https://doi.org /10.1074/jbc.R111.285742
|
[36]
|
Kaya, C., Ashraf, M., Alyemeni, M.N. and Ahmad, P. (2019) The Role of Endogenous Nitric Oxide in Salicylic Acid-Induced Up-Regulation of Ascorbate-Glutathione Cycle Involved in Salinity Tolerance of Pepper (Capsicum annuum L.) Plants. Plant Physiology and Biochemistry, 147, 10-20. https://doi.org /10.1016/j.plaphy.2019.11.040
|
[37]
|
Clark, D., Durner, J., Navarre, D.A. and Klessig, D.F. (2000) Nitric Oxide Inhibition of Tobacco Catalase and Ascorbate Peroxidase. Molecular Plant-Microbe Interactions, 13, 1380-1384.
https://doi.org /10.1094/MPMI.2000.13.12.1380
|
[38]
|
de Pinto, M.C., Locato, V., Sgobba, A., Romero-Puertas Mdel, C., Gadaleta, C., Delledonne, M. and De Gara, L. (2013) S-Nitrosylation of Ascorbate Peroxidase Is Part of Pro-grammed Cell Death Signaling in Tobacco Bright Yellow-2 Cells. Plant Physiology, 163, 1766-1775. https://doi.org /10.1104/pp.113.222703
|
[39]
|
Brehelin, C., Meyer, E.H., de Souris, J.P., Bonnard, G. and Meyer, Y. (2003) Resemblance and Dissemblance of Arabidopsis Type II Peroxiredoxins: Similar Sequences for Divergent Gene Expression, Protein Localization and Activity. Plant Physiology, 132, 2045-2057. https://doi.org /10.1104/pp.103.022533
|
[40]
|
Romero-Puertas, M.C., Laxa, M., Matte, A., Zaninotto, F., Finkemeier, I., Jones, A.M. and Delledonne, M. (2007) S-Nitrosylation of Peroxiredoxin II E Promotes Peroxynitrite-Mediated Tyrosine Nitration. Plant Cell, 19, 4120-4130.
https://doi.org /10.1105/tpc.107.055061
|
[41]
|
Camejo, D., Ortiz-Espín, A., Lázaro, J. J., Romero-Puertas, M. C., Lázaro-Payo, A., Sevilla, F. and Jiménez, A. (2015) Experimental Evidences of the NO Action on a Recombinant PrxII F from Pea Plant and Its Effect Preventing the Citrate Synthase Aggregation. Data in Brief, 3, 108-112. https://doi.org /10.1016/j.dib.2015.02.009
|
[42]
|
Slaymaker, D.H., Navarre, D.A., Clark, D., del Pozo, O., Martin, G.B. and Klessig, D.F. (2002) The Tobacco Salicylic Acid-Binding Protein 3 (SABP3) Is the Chloroplast Carbonic Anhydrase, which Exhibits Antioxidant Activity and Plays a Role in the Hypersensitive Defense Response. Proceed-ings of the National Academy of Sciences of the United States of America, 99, 11640-11645. https://doi.org /10.1073/pnas.182427699
|
[43]
|
Kumar, D. and Klessig, D.F. (2003) High-Affinity Salicylic Acid-Binding Protein 2 Is Required for Plant Innate Immunity and Has Salicylic Acid-Stimulated Lipase Activity. Proceedings of the National Academy of Sciences of the United States of America, 100, 16101-16106. https://doi.org /10.1073/pnas.0307162100
|
[44]
|
Guerra, D., Ballard, K., Truebridge, I. and Vierling, E. (2016) S-Nitrosation of Con-served Cysteines Modulates Activity and Stability of S-Nitrosoglutathione Reductase (GSNOR). Biochemistry, 55, 2452-2464.
|
[45]
|
Wang, Y.Q., Feechan, A., Yun, B.W., Shafiei, R., Hofmann, A., Taylor, P. and Loake, G.J. (2009) S-Nitrosylation of AtSABP3 Antagonizes the Expression of Plant Immunity. The Journal of Biological Chemistry, 284, 2131-2137.
https://doi.org /10.1074/jbc.M806782200
|
[46]
|
Wu, Y., Zhang, D., Chu, J.Y., Boyle, P., Wang, Y., Brindle, I.D. and Despres, C. (2012) The Arabidopsis NPR1 Protein Is a Receptor for the Plant Defense Hormone salicylic Acid. Cell Reports, 1, 639-647.
https://doi.org /10.1016/j.celrep.2012.05.008
|
[47]
|
Mou, Z., Fan, W. and Dong, X. (2003) Inducers of Plant Sys-temic Acquired Resistance Regulate NPR1 Function through Redox Changes. Cell, 113, 935-944. https://doi.org /10.1016/S0092-8674(03)00429-X
|
[48]
|
Frungillo, L., Skelly, M.J., Loake, G.J., Spoel, S.H. and Salgado, I. (2014) S-Nitrosothiols Regulate Nitric Oxide Production and Storage in Plants through the Nitrogen Assimilation Pathway. Nature Communications, 5, 5401.
https://doi.org /10.1038/ncomms6401
|
[49]
|
Feechan, A., Kwon, E., Yun, B.W., Wang, Y., Pallas, J.A. and Loake, G.J. (2005) A Central Role for S-Nitrosothiols in Plant Disease Resistance. Proceedings of the National Academy of Sciences of the United States of America, 102, 8054-8059. https://doi.org /10.1073/pnas.0501456102
|
[50]
|
Lee, U., Wie, C., Fernandez, B.O., Feelisch, M. and Vierling, E. (2008) Modulation of Nitrosative Stress by S-Nitrosoglutathione Reductase Is Critical for Thermotolerance and Plant Growth in Arabidopsis. Plant Cell, 20, 786-802. https://doi.org /10.1105/tpc.107.052647
|
[51]
|
Rustérucci, C., Espunya, M.C., Díaz, M., Chabannes, M. and Martínez, M.C. (2007) S-Nitrosoglutathione Reductase Affords Protection against Pathogens in Arabidopsis, both Locally and Systemically. Plant Physiology, 143, 1282-1292.
https://doi.org /10.1104/pp.106.091686
|
[52]
|
Chaki, M., Fernández-Ocaña, A.M., Valderrama, R., Carreras, A., Esteban, F.J., Luque, F. and Barroso, J.B. (2009) Involvement of Reactive Nitrogen and Oxygen Species (RNS and ROS) in Sunflower-Mildew Interaction. Plant and Cell Physiology, 50, 665-679. https://doi.org /10.1093/pcp/pcp039
|
[53]
|
Kubienova, L., Ticha, T., Jahnova, J., Luhova, L., Mieslerova, B. and Petrivalsky, M. (2014) Effect of Abiotic Stress Stimuli on S-Nitrosoglutathione Reductase in Plants. Planta, 239, 139-146. https://doi.org /10.1007/s00425-013-1970-5
|
[54]
|
Kovacs, I., Durner, J. and Lindermayr, C. (2015) Crosstalk between Nitric Oxide and Glutathione Is Required for Nonexpressor of Pathogenesis-Related Genes 1 (NPR1)-Dependent Defense Signaling in Arabidopsis thaliana. The New phytologist, 208, 860-872. https://doi.org /10.1111/nph.13502
|
[55]
|
Yun, B.-W., Skelly, M., Yin, M., Yu, M., Mun, B.-G., Lee, S.-U. and Loake, G. (2016) Nitric Oxide and S-Nitrosoglutathione Function Additively during Plant Immunity. The New phytologist, 211, 516-526. https://doi.org /10.1111/nph.13903
|
[56]
|
Jahnová, J., Luhová, L. and Petřivalský, M. (2019) S-Nitrosoglutathione Reductase-The Master Regulator of Protein S-Nitrosation in Plant NO Signaling. Plants, 8, 48. https://doi.org /10.3390/plants8020048
|
[57]
|
Chen, R. Q., Sun, S.L., Wang, C., Li, Y.S., Liang, Y., An, F. Y. and Zuo, J.R. (2009) The Arabidopsis PARAQUAT RESISTANT2 Gene Encodes an S-Nitrosoglutathione Reductase that Is a Key Regulator of Cell Death. Cell Research, 19, 1377-1387. https://doi.org /10.1038/cr.2009.117
|