[1] |
(2018) Global Cancer Observatory: Cancer Today. International Agency for Research on Cancer, Lyon. https://gco.iarc.fr/today |
[2] |
Vaupel, P. and Multhoff, G. (2020) Fatal Alliance of Hypoxia-/HIF-1α-Driven Microenvironmental Traits Promoting Cancer Progression. Advances in Experimental Medicine and Biology, 1232, 169-176. https://doi.org/10.1007/978-3-030-34461-0_21 |
[3] |
Masoud, G.N. and Li, W. (2015) HIF-1α Pathway: Role, Regulation and Intervention for Cancer Therapy. Acta Pharmaceutica Sinica B, 5, 378-389. https://doi.org/10.1016/j.apsb.2015.05.007 |
[4] |
Albadari, N., Deng, S.S. and Li, W. (2019) The Transcriptional Factors HIF-1 and HIF-2 and Their Novel Inhibitors in Cancer Therapy. Expert Opinion on Drug Discovery, 14, 667-682. https://doi.org/10.1080/17460441.2019.1613370 |
[5] |
Fu, J.-D., Yao, J.-J., Wang, H., Cui, W.-G., Leng, J., Ding, L.-Y. and Fan, K.-Y. (2019) Effects of EGCG on Proliferation and Apoptosis of Gastric Cancer SGC7901 Cells via Down-Regulation of HIF-1α and VEGF under a Hypoxic State. European Review for Medical and Pharmacological Sciences, 23, 155-161. |
[6] |
Sho, K., Minoru, K., Yoko, G., et al. (2018) Regulatory Mechanisms of Hypoxia-Inducible Factor 1 Activity: Two Decades of Knowledge. Cancer Sciences, 109, 560-571. https://doi.org/10.1111/cas.13483 |
[7] |
LaGory, E.L. and Giaccia, A.J. (2016) The Ever-Expanding Role of HIF in Tumour and Stromal Biology. Nature Cell Biology, 18, 356-365. https://doi.org/10.1038/ncb3330 |
[8] |
Aditi, N., Dhar, R.A., Niranjan, R., et al. (2020) HIF1α-Dependent Upregulation of ATAD2 Promotes Proliferation and Migration of Stomach Cancer Cells in Response to Hypoxia. Biochemical and Biophysical Research Communications, 523, 916-923. https://doi.org/10.1016/j.bbrc.2019.12.130 |
[9] |
Gospodarowicz, D., Abraham, J.A. and Schilling, J. (1989) Isolation and Characterization of a Vascular Endothelial Cell Mitogen Produced by Pituitary-Derived Folliculo Stellate Cells. Proceedings of the National Academy of Sciences of the United States of America, 86, 7311-7315. https://doi.org/10.1073/pnas.86.19.7311 |
[10] |
Yang Tai, Gao, J.H., Wen, S.L., Tong, H., Huang, Z.Y. and Tang, C.-W. (2016) Su2010 Correlations between VEGF-A Expression and Prognosis in Patients with Gastric Adenocarcinoma. Gastroenterology, 150, S610. https://doi.org/10.1016/S0016-5085(16)32092-3 |
[11] |
徐越明, 童玥, 姚文兵. 血管内皮生长因子B研究进展[J]. 药学进展, 2017, 41(6): 458-464. https://doi.org/10.1007/s11623-017-0811-2 |
[12] |
Macedo, F., Ladeira, K., Longatto-Filho, A. and Martins, S.F. (2017) Gastric Cancer and Angiogenesis: Is VEGF a Useful Biomarker to Assess Progression and Remission? Journal of Gastric Cancer, 17, 1. https://doi.org/10.5230/jgc.2017.17.e1 |
[13] |
闻哲, 张霓霓, 黄桂林. 血管生成相关因子在口腔鳞癌中的研究进展[J]. 中国医药导报, 2016, 13(31): 57-60. |
[14] |
Huang, Y.Q., Lin, D. and Taniguchi, C.M. (2017) Hypoxia Inducible Factor (HIF) in the Tumor Microenvironment: Friend or Foe? Science China Life Sciences, 60(10). https://doi.org/10.1007/s11427-017-9178-y |
[15] |
Martin, J.D., Fukumura, D., Duda, D.G., Boucher, Y. and Jain, R.K. (2016) Corrigendum: Reengineering the Tumor Microenvironment to Alleviate Hypoxia and Overcome Cancer Heterogeneity. Cold Spring Harbor Perspectives in Medicine, 6, a027094. https://doi.org/10.1101/cshperspect.a031195 |
[16] |
Ou, X.-W., Wang, R.-X., Kang, M.-F., et al. (2018) Hypoxia Promotes Migration and Invasion of Gastric Cancer Cells by Activating HIF-1α and Inhibiting NDRG2 Associated Signaling Pathway. European Review for Medical and Pharmacological Sciences, 22, 8237-8247. |
[17] |
Zhang, J.J., Xu, J., Dong, Y.H. and Huang, B. (2018) Down-Regulation of HIF-1α Inhibits the Proliferation, Migration, and Invasion of Gastric Cancer by Inhibiting PI3K/AKT Pathway and VEGF Expression. Bioscience Reports, 38, Article No.: BSR20180741. https://doi.org/10.1042/BSR20180741 |
[18] |
Macedo, F., Ladeira, K., Longatto-Filho, A., et al. (2017) Gastric Cancer and Angiogenesis: Is VEGF a Useful Biomarker to Assess Progression and Remission? Journal of Gastric Cancer, 17, 1-10. https://doi.org/10.5230/jgc.2017.17.e1 |
[19] |
Felix, A.S., Lenz, P., Pfeiffer, R.M., et al. (2016) Relationships between Mammographic Density, Tissue Microvessel Density, and Breast Biopsy Diagnosis. Breast Cancer Research, 18, 88. https://doi.org/10.1186/s13058-016-0746-9 |
[20] |
Mahase, S., Rattenni, R.N., Wesseling, P., Leenders, W., Baldotto, C., Jain, R. and Zagzag, D. (2017) Hypoxia-Mediated Mechanisms Associated with Antiangiogenic Treatment Resistance in Glioblastomas. The American Journal of Pathology, 187(5). https://doi.org/10.1016/j.ajpath.2017.01.010 |
[21] |
Wang, J.-C., Li, G.-Y., Li, P.-P., et al. (2017) Suppression of Hypoxia-Induced Excessive Angiogenesis by Metformin via Elevating Tumor Blood Perfusion. Oncotarget, 8, 73892-73904. https://doi.org/10.18632/oncotarget.18029 |
[22] |
Aneese, A.M., Manuballa, V., Amin, M., et al. (2017) Bladder Urothelial Carcinoma Extending to Rectal Mucosa and Presenting with Rectal Bleeding. World Journal of Gastrointestinal Endoscopy, 9, 282. https://doi.org/10.4253/wjge.v9.i6.282 |
[23] |
曹辉琼, 蔡清红. 缺氧诱导因子-1α及血管内皮生长因子的表达与胃癌血管生成的关系[J]. 吉林医学, 2020, 41(1): 184-185. |
[24] |
Shunichi, Y., Takatoshi, N., Yuichi, K., Kazuhide, H. and Michio, A. (2015) Indomethacin-Induced Intestinal Epithelial Cell Damage Is Mediated by pVHL Activation through the Degradation of Collagen I and HIF-1α. Biochemical and Biophysical Research Communications, 468, 671-676. https://doi.org/10.1016/j.bbrc.2015.11.014 |
[25] |
Jayant, D., Shweta, K., Kumar, R.S., et al. (2018) Centchroman Regulates Breast Cancer Angiogenesis via Inhibition of HIF-1α/VEGFR2 Signalling Axis. Life Sciences, 193, 9-19. https://doi.org/10.1016/j.lfs.2017.11.045 |
[26] |
Vojnovic, N., Loman, N., Goldrath, A.W., et al. (2017) An HIF-1α/VEGF-A Axis in Cytotoxic T Cells Regulates Tumor Progression. Cancer Cell, 32, 669.e5-683.e5. https://doi.org/10.1016/j.ccell.2017.10.003 |
[27] |
Joseph, J.P., Harishankar, M.K., Pillai, A.A. and Devi, A. (2018) Hypoxia Induced EMT: A Review on the Mechanism of Tumor Progression and Metastasis in OSCC. Oral Oncology, 80, 23-32. https://doi.org/10.1016/j.oraloncology.2018.03.004 |
[28] |
Tam, S.Y., Wu, V.W.C. and Law, H.K.W. (2020) Hypoxia-Induced Epithelial-Mesenchymal Transition in Cancers: HIF-1α and Beyond. Frontiers in Oncology, 10, 486. https://doi.org/10.3389/fonc.2020.00486 |
[29] |
Iacovelli, R., Sternberg, C.N., Porta, C., et al. (2015) Inhibition of the VEGF/VEGFR Pathway Improves Survival in Advanced Kidney Cancer: A Systematic Review and Meta-Analysis. Current Drug Targets, 16, 164-170. https://doi.org/10.2174/1389450115666141120120145 |
[30] |
Tátrai, E., Bartal, A., Gacs, A., et al. (2017) Cell Type-Dependent HIF1α-Mediated Effects of Hypoxia on Proliferation, Migration and Metastatic Potential of Human Tumor Cells. Oncotarget, 8, 44498-44510. https://doi.org/10.18632/oncotarget.17806 |
[31] |
周晓黎, 舒磊, 廖艳, 石拓, 梅智谋, 杨家耀, 时昭红. PI3K/AKT通路在低氧环境下对结肠癌细胞HIF-1α及糖酵解的作用[J]. 华中科技大学学报(医学版), 2018, 47(2): 203-206. |
[32] |
Ader, I., Gstalder, C., Bouquerel, P., et al. (2015) Neutralizing S1P Inhibits Intratumoral Hypoxia, Induces Vascular Remodelling and Sensitizes to Chemotherapy in Prostate Cancer. Oncotarget, 6, 13803-13821. https://doi.org/10.18632/oncotarget.3144 |
[33] |
Yeh, Y.H., Wang, S.W., Yeh, Y.C., et al. (2016) Rhapontigenin Inhibits TGF-β-Mediated Epithelial Mesenchymal Transition via the PI3K/AKT/m TOR Pathway and Is Not Associated with HIF-1α Degradation. Oncology Reports, 35, 2887-2895. https://doi.org/10.3892/or.2016.4664 |
[34] |
Liu, L. and Xiao, W. (2017) Notch1 Signaling Induces Epithelial-Mesenchymal Transition in Lens Epithelium Cells during Hypoxia. BMC Ophthalmology, 17, 135. https://doi.org/10.1186/s12886-017-0532-1 |
[35] |
Pinato, D.J., Black, J.R., Trousil, S., Dina, R.E., Trivedi, P., Mauri, F.A. and Sharma, R. (2017) Programmed Cell Death Ligands Expression in Phaeochromocytomas and Paragangliomas: Relationship with the Hypoxic Response, Immune Evasion and Malignant Behavior. OncoImmunology, 6, e1358332. https://doi.org/10.1080/2162402X.2017.1358332 |
[36] |
Zhao, Z., Li, Y.K., Shukla, R., Liu, H., Jain, A., Barve, A. and Cheng, K. (2019) Development of a Biocompatible Copolymer Nanocomplex to Deliver VEGF siRNA for Triple Negative Breast Cancer. Theranostics, 9, 4508-4524. https://doi.org/10.7150/thno.34314 |
[37] |
Bhattacharya, R., Fan, F., Wang, R., et al. (2017) Intracrine VEGF Signalling Mediates Colorectal cancer cell Migration and Invasion. British Journal of Cancer, 117, 848-855. https://doi.org/10.1038/bjc.2017.238 |
[38] |
Bhattacharya, R., Ye, X.-C., Wang, R., Ling, X., McManus, M., Fan, F., Boulbes, D. and Ellis, L.M. (2016) Intracrine VEGF Signaling Mediates the Activity of Prosurvival Pathways in Human Colorectal Cancer Cells. Cancer Research, 76, 3015-3026 https://doi.org/10.1158/0008-5472.CAN-15-1605 |
[39] |
Ridiandries, A., Tan, J.T. and Bursill, C.A. (2016) The Role of CC-Chemokines in the Regulation of Angiogenesis. Int J Mol Sci., 17(11). https://doi.org/10.3390/ijms17111856 |
[40] |
Lutske, L., van Diest, P., van der Groep, P., et al. (2017) Expression of HIF-1α in Medullary Thyroid Cancer Identifies a Subgroup with Poor Prognosis. Oncotarget, 8, 28650-28659. https://doi.org/10.18632/oncotarget.15622 |
[41] |
Veli, B., Kemal, D., Oktay, B., et al. (2015) Predictive Significance of VEGF and HIF-1α Expression in Patients with Metastatic Colorectal Cancer Receiving Chemotherapy Combinations with Bevacizumab. Asian Pacific Organization for Cancer Prevention, 16, 6149-6154. https://doi.org/10.7314/APJCP.2015.16.14.6149 |
[42] |
Jiang, S., Gao, Y., Yu, Q.H., Li, M., Cheng, X., Hu, S.B., Song, Z.F. and Zheng, Q.C. (2020) P-21-Activated Kinase 1 Contributes to Tumor Angiogenesis upon Photodynamic Therapy via the HIF-1α/VEGF Pathway. Biochemical and Biophysical Research Communications, 526, 98-104. https://doi.org/10.1016/j.bbrc.2020.03.054 |