1. 引言
随着经济社会的发展和人类生产活动的不断扩大,环境污染和生态破坏问题日益突出,尤其是气候变化问题受到全人类的关注。面对大量温室气体尤其是CO2的排放导致的全球气候变暖趋势,全球各国和地区都积极提出对策,其中碳排放权交易制度成为减少碳排放并控制气候变化的重要手段。欧盟建立了全球最活跃、交易量最大的“欧盟碳排放交易体系”(EU ETS),以控制企业的碳排放行为。碳排放权交易制度通过对企业需要的碳排放量进行定价,要求碳排放企业先购买碳排放配额再进行排放,可以有效控制企业碳排放,受到许多国家和地区的认可。
解决碳排放问题已成为中国当务之急。20世纪90年代,中国的碳排放量仅占全球总量的11%,据国际能源机构统计,2006年中国碳排放总量已经位居世界第一,超过了美国。而且近年来中国的碳排放量一直在高速增长,需要立即给出对策应对温室气体排放问题。早期中国的环境政策主要是行政命令式的规制手段,取得的成效甚微。2011年中国引入了市场型的碳减排手段——碳排放权交易机制,并出台碳交易试点政策,批准北京、上海、天津、重庆、湖北、广东、深圳七个省市开展碳交易试点工作,并计划于2017年建立全国统一的碳排放权交易市场。2017年12月中国正式启动了全国碳市场的建设工作。随着碳排放权交易制度的继续实践,试点地区的碳排放效率水平得到一定程度的改善 [1],碳交易试点政策的实施同时也对我国企业产生了重要影响。但碳交易试点政策是否提高了企业的全要素生产率,能否在环境效益和经济效益上实现双赢仍未得到完全检验。
本文利用此次碳交易试点政策为准自然实验,采用三重差分方法来检验碳排放权交易制度对企业全要素生产率的影响,发现试点政策显著降低了试点省市里试点行业中企业的全要素生产率。进一步进行动态效应检验,发现这种降低作用逐年增强。此外,本文还通过更换全要素生产率测度方式、缩小时间窗口和构造反事实的安慰剂检验等一系列稳健性检验,研究结果显示,碳交易试点政策显著降低了企业全要素生产率。通过作用机制检验发现试点政策通过降低企业的资本配置效率来影响全要素生产率,异质性检验的结果显示国有企业受试点政策影响更敏感。
本文所做工作主要体现在以下三个方面:1) 通过文献梳理发现,本文可能是首篇研究碳交易试点政策对企业全要素生产率的文献。目前关于碳交易试点政策和企业的研究主要集中在试点政策对企业技术研发和创新的影响 [2] [3],还有关于碳排放权交易对企业股票收益率的影响 [4],碳排放权交易制度对企业价值的影响 [5],缺乏关于碳交易试点政策对企业全要素生产率影响的研究,本文的实证检验填补了这一空缺领域。2) 在研究方法上,本文构建三重差分方法进行实证分析,进一步采用了一系列检验方法进行稳健性检验,使本文研究结论更加可信。3) 通过分组检验,发现碳交易试点政策对TFP的负向影响主要体现在国有企业中,并进一步对这种影响的作用机制进行了实证研究。
2. 文献综述
2.1. 环境规制与全要素生产率
学术界关于环境规制对全要素生产率的影响存在争论:一方认为环境规制会增加企业的生产成本,致使生产效率的下降,进而降低企业的全要素生产率;另一方则认为环境规制会迫使企业自愿地进行技术创新和低碳研发,创新研发带来生产效率的提高,抵消其增加成本的不利影响,促使企业的全要素生产率得到提升,这种观点也被称为“波特假说”。以上两种观点都被国外的文献证实。Barbera Anthony J和McConnell Virginia D基于美国五个污染最为严重的制造业的实证研究发现行政命令型的环境规制对企业TFP具有负向影响 [6]。Telle K和Larsson J利用挪威的环境规制和工业数据研究发现不断提升的环境规制水平有助于提高工业TFP [7]。
随着近年来中国的环境问题日益突出和环境规制实践,国内学者也开始关注国内环境规制对TFP的影响。李树和陈刚采用双重差分法研究发现严格且适宜的环境规制有利于TFP的增长 [8]。朱承亮测算并分解了中国各省火电行业的生产率,结果发现环境规制会提高绝大多数省份的火电行业TFP [9]。李强在垄断竞争的环境下研究发现环境分权与地区企业TFP之间的关系呈现倒“U”形 [10]。范丹等研究发现在全局DEA下碳交易试点政策并没有提高试点省份的工业TFP,但促使试点省份的技术进步率得到提升 [11]。钱雪松等采用双重差分法研究发现2009年十大产业振兴规划政策导致了十大产业内企业TFP显著下降 [12]。孙玉阳等依据省级面板数据发现行政命令型环境规制提升了企业TFP,市场激励性环境规制对企业TFP的提升没有显著作用,公众参与型环境规制对企业TFP无影响 [13]。任胜钢等发现2007年SO2排放权交易试点政策显著提高了试点地区上市公司的TFP [14]。Hong-Li Tang et al.基于中国工业企业面板数据的研究发现行政命令型的环境规制严重阻碍了企业TFP的增长,这种负面影响具有滞后效应,并且是持续的 [15]。
2.2. 碳排放权交易制度的相关研究
国外学者对于碳排放权交易制度的研究较早,且主要以欧盟碳排放交易体系为背景。A. Marcel Oestreich和Ilias Tsiakas对EU ETS对德国股票收益率的影响进行实证研究,发现碳排放权交易制度通过增加企业现金流导致股票收益率增长 [16]。Roel Brouwers et al.在EU ETS的背景下,发现碳排放权交易制度可以在一定程度上减少企业碳排放,但不一定能使企业的财务绩效提高 [17]。
国内对碳交易试点政策的研究出现在近几年,且主要集中在碳减排效果和技术创新方面。宋晓玲和孔垂铭运用2013年至2016年中国七大碳排放权交易市场和试点省份的数据进行实证研究,发现碳排放权交易额对产业结构变动有显著的正向影响 [18]。黄向岚等利用双重差分方法研究中国碳排放权交易政策的环境红利,在加入控制变量后发现六个碳交易试点所在省份的碳排放量显著减少,实现了环境红利 [19]。沈洪涛和黄楠运用事件研究法研究发现碳交易能带来企业短期价值的提高,但双重差分法检验的结果却显示碳交易未能提高企业的长期价值 [5]。Xiaohuan Lyn et al.使用双重差分模型研究碳排放权交易制度如何影响低碳技术创新,结果表明短期内碳排放权交易制度会抑制低碳技术创新的发展 [20]。Yue-Jun Zhang et al.采用双重差分法和基于双重差分的倾向得分匹配法研究发现碳交易试点政策有助于改善电力和航空行业中企业的技术创新,而对其他六个试点行业中企业的全要素生产率没有影响 [3]。Wei Zhang et al.采用双重差分方法发现实施碳排放权交易可以减少试点省市的碳排放量,并增加工业总产值 [21]。
3. 制度背景和研究假设
3.1. 制度背景
自从2005年签署《京都议定书》以来,碳排放权交易制度已经成为降低碳排放和提高能源利用效率的重要工具,全球许多国家和地区都建立了碳交易体系。世界银行报告显示,目前全球建立了碳交易市场的包括39个国家和23个地区,欧盟碳排放交易体系(EU ETS)是全球最活跃、规模最大的碳交易市场。由于碳排放总量居世界第一,中国对碳排放总量的控制以及碳排放交易体系的建立都迫在眉睫。
针对碳排放的严峻形势,2011年中国引进碳排放权交易机制,国家发改委印发文件允许北京、天津等七个省市开展碳交易试点工作,七个试点于2013年6月先后开始建立碳市场并开始实质交易。碳交易试点主要以碳配额(SHEA)和国家核证自愿减排量(CCER)作为交易产品。到2015年底,七个试点碳交易市场的CCER累计交易量达到3600万吨,其中湖北市场最为活跃,交易量最大。国务院在2016年提出的“十三五”工作方案中对2020年中国单位GDP的碳排放提出新的要求,要求国企、上市公司和参加碳市场的企业带头披露碳减排相关信息和举措,并提出部分重工化工业在2020年左右达到最高碳排放的畅想。2017年12月19日,全国碳交易市场由发改委宣告正式启动,第2日印发的《全国碳排放权交易市场建设方案(发电行业)》表明我国碳减排工作到达了新阶段。
3.2. 研究假设
碳排放权交易,简单地讲,就是政府通过分配给企业一定的碳排放配额,规定企业的免费碳排放上限,来减少企业的碳排放量。企业可以通过碳市场卖出多余配额,也可以在碳市场上购买缺少的配额。因而,碳排放权交易实际上是一种基于经济手段的市场运行机制。
一方面,建立碳市场后,企业面对碳减排压力,会增加减碳设备的投入,这就增加了企业在生产过程中的成本,企业面临着新的决策约束,这可能导致生产效率下降。另一方面,碳交易试点政策使企业暴露在不确定的环境中,这会对企业的投资决策和资源分配产生影响,基于长期经济利益的考虑,企业可能会减少对高碳排放的生产部门的投入,转而增加对低碳排放的生产部门的投入,这可能会降低企业的资本配置效率,致使全要素生产率的下降。因而本文提出研究假设H1:
H1:碳交易试点政策会降低企业全要素生产率。
碳交易试点政策对全要素生产率的影响在具有不同股权性质的企业间存在一定程度的差异。考虑企业股权性质差异,国有企业与政府的关系相比非国有企业更为密切,在财政支持上拥有更大优势,对于碳交易试点政策带来的减碳成本压力和“卖碳”带来的收益都不敏感,而非国有企业在面对减碳压力时进行内部机制的调整和生产要素的重新分配更加灵活,资源重新配置的效率较高,非国有企业全要素生产率受到的负向作用会更小。因而本文提出研究假设H2:
H2:碳交易试点政策会更为显著地降低国有企业的全要素生产率。
4. 研究设计
4.1. 样本与数据来源
本文选取2008~2015年间所有中国A股上市公司的面板数据作为研究样本。基于碳交易试点政策针对的是试点省份里试点行业中企业的考虑,本文以中国证监会2012行业分类为标准,借鉴刘晔和张训常的研究 [2],选取了九个高碳排放行业作为试点行业,选取的行业见表1。为了保证数据的连续性和有效性,借鉴以往文献中对上市公司数据的处理方法,本文剔除了以下样本:遭受连续亏损的企业(PT、ST和*ST企业);数据异常和缺失值较严重的企业。最终,本文得到了799家上市公司的数据样本,共计6392个有效观测值。本文的上市公司数据均来源于CSMAR数据库和RESSET数据库。

Table 1. Comparison of industry codes and names
表1. 行业代码和名称对照
4.2. 变量定义与研究方法
4.2.1
. 被解释变量
本文主要被解释变量为企业全要素生产率TFP。对于TFP的测度,多数学者采用的是Olley和Pakes [22] 或Levinsohn和Petrin [23] 提出的半参数法:OP方法和LP方法。由于本文选取的样本中缺少OP方法在测度TFP过程中需要的代理变量,如果采用OP方法会导致在TFP估计过程中一些企业样本被丢弃,而LP方法可以解决估计过程中的代理变量缺失问题,能减少TFP测算过程中一些企业样本的丢弃。基于此,借鉴Levinsohn和Petrin [23]、鲁晓东和连玉君 [24] 等对TFP的相关研究,本文采用LP方法估计TFP。具体而言,产出变量使用主营业务收入衡量,资本变量用固定资产净值衡量,劳动投入变量用员工人数衡量,中间品投入的变量用购买商品、接受劳务支付的现金衡量。
4.2.2. 控制变量
本文参考钱雪松等 [12]、任胜钢等 [14] 和黄贤环等 [25] 关于企业全要素生产率的研究,选取企业发展能力(Growth)、经营活动现金流(Fcf)、股权集中度(Top1)、股权性质(Soe)、资产负债率(Lev)、独立董事比例(Indirect)、和资产收益率(Roa)作为控制变量。变量的具体定义见表2。
4.2.3. 模型设定
学术界对于政策效应评估的常用方法是双重差分法(Difference-in-Difference,简称DID)和三重差分法(Difference-in-Difference-in-Difference,简称DDD)。
双重差分法通过为受到政策影响的处理组找到一个不受政策影响的对照组来检验政策实施的实际影响。双重差分法要求对照组和处理组要有相似的特征,即满足平行趋势假设的要求,否则会使结果产生偏误。鉴于这次碳交易试点政策只涉及试点省市中的试点行业,我们可以考虑将处理组设置为试点省市里试点行业中的企业,而将对照组设置为试点省市里非试点行业的企业或非试点省市里的企业,然后进行双重差分法检验。但这两种对对照组的设置都有可能无法满足平行趋势假设的要求:若将对照组设置为试点省市里非试点行业的企业,试点行业中的企业的全要素生产率的变化趋势相对于非试点行业中的企业即使在未出台碳交易试点政策的情况下本来就可能存在差异,即存在行业间的差异;若将对照组设置为非试点省市里的企业,则无法排除其他政策对不同地区产生不一致影响的干扰,如2007年针对天津、重庆、湖北等11个省的SO2排放权交易试点政策,以及2014年针对湖北、广东等7个省的水权交易试点政策。因而,无论以哪一组作为对照组,采用双重差分法估计的结果可能并不可靠。
如果平行趋势假设不成立,通常可以采用三重差分法解决 [26]。碳交易试点政策的实施提供了很好的准自然实验,通过设置两组对照组,将对照组1设置为试点省市里非试点行业的企业,对照组2设置为非试点省市里的企业,就可以消除处理组与对照组1之间存在的行业差异和与对照组2之间存在的地区差异,得到一致估计。
本文采用三重差分法来检验碳排放交易试点政策对企业全要素生产率的影响,第一层差分来自于地区层面(试点省市和非试点省市),第二层差分来自于行业层面(试点行业和非试点行业),第三层差分来自于年份(政策实施前和政策实施后)。考虑到本文使用的是面板数据,通过进行F检验和Hausman检验,结果显示应采用固定效应模型。具体的计量模型如下:
(1)
其中,下标i、j、k、t分别表示企业、省市、行业和时间,
为被解释变量TFP,
、
和
为虚拟变量,各变量的解释见表2。
表示前面提到的控制变量。
是地区固定效应,
是行业固定效应。
是随机误差项。本文最感兴趣的系数是
,它反映的是碳交易试点政策对试点省市里试点行业中的企业的影响。
5. 实证结果分析
5.1. 变量描述性统计
表3是相关变量的描述性统计。如表所示,处理组企业(试点省市里试点行业的企业)的全要素生产率的均值低于对照组1,这说明在试点省市中处于不同行业间的企业全要素生产率原本就可能存在差异。再者,对照组2中企业的全要素生产率明显低于其他两组,说明试点地区的企业全要素生产率可能原本就高于非试点地区。同时,观察到本文选取的所有企业的全要素生产率标准差为1.0058,最小值为3.1710,最大值为16.8029,这表明在2008~2015年间样本企业间全要素生产率存在着较大差异。同时,控制变量在处理组与2组对照组间也存在较大差异,这为考察碳交易试点政策对上市公司全要素生产率的影响提供了很好的样本。而观察股权性质Soe可以发现,相较于两个对照组,处理组中有79.51%的企业是国有企业,这表明高碳排放行业几乎由国有企业垄断。

Table 3. Descriptive statistics of variables
表3. 变量描述性统计
5.2. 实证结果
本文用Stata15.1对模型(1)进行估计,表4报告了估计结果。其中,第(1)、(2)是没有添加其他控制变量的结果,第(1)列控制了省份固定效应和行业固定效应,第(2)列控制了个体固定效应;第(3)、(4)列加入了控制变量,第(3)列控制了省份固定效应和行业固定效应,第(4)列控制了个体固定效应。4列结果显示交乘项Prov × Indus × Treat的估计系数均在1%的显著性水平上显著为负,表明碳交易试点政策显著降低了企业全要素生产率。

Table 4. The impact of emissions trading pilot policies on total factor productivity: the triple difference method
表4. 碳排放交易试点政策对全要素生产率的影响:三重差分法
注:*、**和***分别表示10%、5%和1%的显著性水平,括号内为p值;Control表示控制变量。以下各表同。
5.3. 动态效应分析
为了揭示碳交易试点政策影响上市公司全要素生产率的动态效应,引入虚拟变量Year12、Year13、Year14、Year15,分别在对应年份取值为1,其他年份则取值为0,与Prov和Indus交乘,得到的估计结果如表5。这表明碳交易试点政策对上市公司全要素生产率的降低作用在2012至2015年期间逐渐增强。

Table 5. Dynamic impact of carbon trading pilot policy on total factor productivity: Triple difference method
表5. 碳交易试点政策对全要素生产率的动态影响:三重差分法
5.4. 稳健性检验
为保证前文实证结果的稳健性,本文进一步做了如下检验:
5.4.1. 排除测度方式的影响
本文进一步采用OP方法,在排除了代理变量缺失的样本后,估计其他企业的全要素生产率,以避免测度方式的不同影响前文实证检验结果。具体而言,使用企业上市年龄和固定资产净值作为状态变量,用股权性质作为控制变量,用企业的投资作为代理变量,用员工人数和购买商品、接受劳务支付的现金作为自由变量,用公司简称和行业的同时变化衡量企业是否退出,得到由OP方法估计出来的全要素生产率。并引入企业个体固定效应,进行三重差分回归,检验结果如表6第(1)列和第(2)列所示,与前文一致,说明本文的回归结果并不受被解释变量测度方式不同的影响。
5.4.2. 排除其他事件的影响
为排除碳交易试点政策出台后其他事件的干扰,本文还缩小了时间窗口,仅选取2011年和2012年这两年作为研究期间进行三重差分回归,检验结果如表6第(3)列和第(4)列所示。结果显示,交互项Prov × Indus × Treat的系数至少在10%的显著性水平下显著为负,表明第一年年底的碳交易试点政策对上市公司全要素生产率的降低作用在第二年就已经开始显现,这就在一定程度上排除了碳交易试点政策出台后其他事件的干扰。
5.4.3. 安慰剂检验
本文通过随机选取8个其他行业作为试点行业,并与前文一样进行对模型(1)的回归,进一步采取构造反事实的方法来进行安慰剂检验,检验结果如表6第(5)列和第(6)列所示,回归结果显示交互项Prov × Indus × Treat的估计系数并不显著。
注:DDD表示交互项Prov × Indus × Treat,Province、Industry、Stkcd分别表示省份固定效应、行业固定效应和个体固定效应。
因而,以上一系列稳健性检验结果表明前文得到的结论是一致的。
5.5. 作用机制检验
以上研究表明,碳交易试点政策会降低企业全要素生产率。那么碳交易试点政策通过什么渠道使企业全要素生产率降低?根据前文的理论分析,碳交易试点政策可能会影响企业的资源配置效率。本文从企业投资角度考虑,研究碳交易试点政策对企业资本配置效率的影响,检验这一作用机制是否成立。
具体而言,借鉴方军雄 [27]、钱雪松等 [12] 研究处理方法,运用“投资——投资机会”敏感性模型来检验碳交易试点政策是否通过资本配置效率来降低企业全要素生产率,具体模型如下:
(2)
其中,
表示企业投资水平,用“(购建固定资产、无形资产和其他长期资产支付的现金–处置固定资产、无形资产和其他长期资产收回的现金净额 + 取得子公司及其他营业单位支付的现金净额-处置子公司及其他营业单位收到的现金净额-折旧摊销)”计算,
表示企业投资机会,用滞后一期的资产收益率衡量,其他变量的定义和模型(1)一致。本文关心的是交互项
的系数
,它反映的是碳交易试点政策对试点省市里试点行业中的企业投资效率的影响。
模型(2)的实证结果如表7第(1)列和第(2)列所示。Prov × Treat × Roa的系数均在10%的水平下显著为负,表明碳交易试点政策出台后,处理组企业的投资效率显著下降,碳交易试点政策通过降低资本配置效率水平对企业全要素生产率产生了影响。

Table 7. Mechanism of action test and heterogeneity test
表7. 作用机制检验和异质性检验
注:PTR表示交互项Prov × Treat × Roa。
5.6. 异质性分析
尽管前文已经论证了碳排放交易试点政策对试点省市里试点行业中的企业全要素生产率的影响,但对试点中的不同企业的影响是否存在差异?由于不同性质的企业的碳减排成本和资源配置效率可能存在差异,进而影响企业的全要素生产率,本文从企业股权性质(国有和非国有)方面对碳交易试点政策影响企业全要素生产率的异质性进行检验。
表7第(3)列至第(6)列列出了这两组样本的回归结果,第(3)列和第(4)列显示的是国有企业样本的估计值,前者控制了省份固定效应和行业固定效应,后者控制了企业个体固定效应,结果均在1%的水平下显著为负,而第(5)列和第(6)列非国有企业样本的回归结果均显示交互项Prov × Treat × Roa的系数不显著,这表明与国有企业相比,非国有企业的全要素生产率没有因为碳交易试点政策的冲击而显著降低。这表明国有企业的全要素生产率在碳交易试点政策下受到的影响可能更大。
6. 主要结论与对策建议
为了减少碳排放,我国在2011年出台碳交易试点政策,允许北京、上海等七个省市启动碳交易试点工作,并于2017年底建立了全国统一的碳交易市场,确定了利用市场机制完成碳减排目标。随着碳交易试点政策的深入实践,人们对该政策碳减排效益的关注度越来越高。然而,该政策会如何影响企业?能否在获得碳减排效应的同时实现发展,获得环境与经济的双赢?对这个问题的研究将有助于指导和完善环境经济政策,但学术界在这个领域缺乏实证研究。鉴于此,本文建立三重差分模型实证考察了该政策对我国A股上市公司的全要素生产率的影响。本文的研究结果显示:1) 三重差分检验结果显示,碳交易试点政策显著降低了企业的全要素生产率。2) 动态效应检验结果显示,在2012年至2015年这个期间,碳交易试点政策对试点省市里试点行业中的企业全要素生产率的降低作用逐渐增强。3) 作用机制检验结果表明,碳交易试点政策通过降低企业资本配置效率水平来影响企业全要素生产率。4) 异质性分析表明,国有企业对碳交易试点政策更敏感,实施碳交易试点政策会显著降低国有企业的全要素生产率。
鉴于前文研究成果,本文提出如下对策建议:1) 为了达成环境与经济共赢的目标,政府在针对不同企业制定和推行碳交易政策时不能一刀切,而应该基于不同企业特征采取差异性措施,正如波特假说所强调的那样,环境规制应该采用灵活的方法。从本文的实证结果来看,相对于非国有企业,国有企业的全要素生产率受碳交易试点政策的负面影响更大。因而,政府在建立全国碳市场时应该统筹兼顾,在追求效率的同时也要兼顾公平,除了保证市场环境的公平竞争,还应该对国有企业重点关注,降低碳交易政策对国有企业的负面影响。2) 企业应将碳减排纳入日常管理,积极提出基于技术创新的解决方案,激发创新活力,节约碳排放配额,将多余配额在碳交易市场上卖出,还可以获得额外的经济效益,最大限度地利用碳交易政策的创新抵消效应。此外,在资源配置效率水平方面,非国有企业相对国有企业在应对碳减排压力时调整与改革企业内部机制时更加灵活,企业内部的生产可以更高效地流动,资源配置效率更高,而国有企业对外部市场的信息往往缺乏敏感性,可以进一步优化国有企业的治理机制,提高国有企业面对外部冲击的灵活性,降低碳交易政策对国有企业的负面影响。
基金项目
本文受到江苏大学财经学院第十八批大学生科研项目18C031资助。